A194868 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-(1+sqrt(3))/2.
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 9, 6, 3, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 11, 8, 5, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 8, 5, 13, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 8, 5, 13
Offset: 1
Examples
First nine rows: 1 2 1 2 1 3 2 4 1 3 5 2 4 1 3 5 2 4 1 6 3 5 2 7 4 1 6 3 8 5 2 7 4 1 6 3 8 5 2 7 4 1 9 6 3
Programs
-
Mathematica
r = -(1 + Sqrt[3])/2; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194868 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194869 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194870 *)
Comments