cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A194869 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194868; an interspersion.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 14, 12, 15, 13, 11, 19, 17, 21, 18, 16, 20, 26, 23, 28, 25, 22, 27, 24, 34, 31, 36, 33, 30, 35, 32, 29, 42, 39, 45, 41, 38, 44, 40, 37, 43, 52, 48, 55, 51, 47, 54, 50, 46, 53, 49, 62, 58, 65, 61, 57, 64, 60, 56, 63, 59, 66, 74, 69, 77
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

Every pair of rows eventually intersperse.

Examples

			Northwest corner:
1...3...5...9...14..19
2...4...7...12..17..23
6...10..15..21..28..36
8...13..18..25..33..41
11..16..22..30..38..47
20..27..35..44..54..64
		

Crossrefs

Programs

  • Mathematica
    r = -(1 + Sqrt[3])/2;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194868 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]] (* A194869 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]   (* A194870 *)

A194832 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r= -tau = -(1+sqrt(5))/2.

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11
Offset: 1

Views

Author

Clark Kimberling, Sep 03 2011

Keywords

Comments

Every irrational number r generates a triangular array in the manner exemplified here. Taken as a sequence, the numbers comprise a fractal sequence f which induces a second (rectangular) array whose n-th row gives the positions of n in f. Denote these by Array1 and Array2. As proved elsewhere, Array2 is an interspersion. (Every row intersperses every other row except for initial terms.) Taken as a sequence, Array2 is a permutation, Perm1, of the positive integers; let Perm2 denote its inverse permutation.
Examples:
r................Array1....Array2....Perm2
tau..............A054065...A054069...A054068
-tau.............A194832...A194833...A194834
sqrt(2)..........A054073...A054077...A054076
-sqrt(2).........A194835...A194836...A194837
sqrt(3)..........A194838...A194839...A194840
-sqrt(3).........A194841...A194842...A194843
sqrt(5)..........A194844...A194845...A194846
-sqrt(5).........A194856...A194857...A194858
sqrt(6)..........A194871...A194872...A194873
-sqrt(6).........A194874...A194875...A194876
sqrt(8)..........A194877...A194878...A194879
-sqrt(8).........A194896...A194897...A194898
sqrt(12).........A194899...A194900...A194901
-sqrt(12)........A194902...A194903...A194904
e................A194859...A194860...A194861
-e...............A194865...A194866...A194864
pi...............A194905...A194906...A194907
-pi..............A194908...A194909...A194910
(1+sqrt(3))/2....A194862...A194863...A194867
-(1+sqrt(3))/2...A194868...A194869...A194870
2^(1/3)..........A194911...A194912...A194913

Examples

			Fractional parts: {-r}=-0.61..;{-2r}=-0.23..;{-3r}=-0.85..;{-4r}=-0.47..; thus, row 4 is (3,1,4,2) because {-3r} < {-r} < {-4r} < {-2r}. [corrected by _Michel Dekking_, Nov 30 2020]
First nine rows:
  1
  1 2
  3 1 2
  3 1 4 2
  3 1 4 2 5
  3 6 1 4 2 5
  3 6 1 4 7 2 5
  8 3 6 1 4 7 2 5
  8 3 6 1 9 4 7 2 5
		

References

  • C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997), 157-168.

Crossrefs

Programs

  • Mathematica
    r = -GoldenRatio;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]
    (* A194832 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194833 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194834 *)

Extensions

Table in overview corrected by Georg Fischer, Jul 30 2023

A194870 Inverse permutation of A194869; every positive integer occurs exactly once.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 8, 10, 7, 9, 15, 12, 14, 11, 13, 20, 17, 19, 16, 21, 18, 26, 23, 28, 25, 22, 27, 24, 36, 33, 30, 35, 32, 29, 34, 31, 44, 41, 38, 43, 40, 37, 45, 42, 39, 53, 50, 47, 55, 52, 49, 46, 54, 51, 48, 63, 60, 57, 65, 62, 59, 56, 64, 61, 58, 66, 74, 71, 68
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Crossrefs

Programs

A376448 a(n) = k if k is odd otherwise a(n) = k+1 and k = floor( 2^n*(1+sqrt(5))/2 ).

Original entry on oeis.org

1, 3, 7, 13, 25, 51, 103, 207, 415, 829, 1657, 3313, 6627, 13255, 26509, 53019, 106039, 212079, 424157, 848315, 1696631, 3393263, 6786527, 13573053, 27146105, 54292211, 108584423, 217168845, 434337691, 868675383, 1737350767, 3474701533, 6949403065, 13898806131, 27797612261, 55595224523
Offset: 0

Views

Author

Thomas Scheuerle, Sep 23 2024

Keywords

Comments

The sequence of all multiples of an irrational b is equidistributed modulo 1. Such a sequence is called a Weyl sequence. It is common practice in computing to approximate a Weyl sequence by taking integer multiples of some integer m modulo a power of two. This requires that the integer m is odd. This sequence provides suitable m = a(n) for the case modulo 2^n. It utilizes the golden ratio for approximation of irrationality.

Examples

			An example for a pseudo Weyl sequence obtained from a(3):
{0, 1, 2, 3, 4, 5, 6, 7} * a(3) mod 2^3 = {0, 5, 2, 7, 4, 1, 6, 3}. (Without zero also part of A194868).
		

Crossrefs

Programs

  • Mathematica
    k[n_]:=Floor[2^n*GoldenRatio];Table[If[OddQ[k[n]],k[n],k[n]+1],{n,0,35}] (* James C. McMahon, Oct 20 2024 *)
  • PARI
    a(n) = {my( m=floor(quadgen(5)<
    				

Formula

a(n) = 2*A293313(n-1) + 1, for n > 0.
Showing 1-4 of 4 results.