A194869 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194868; an interspersion.
1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 14, 12, 15, 13, 11, 19, 17, 21, 18, 16, 20, 26, 23, 28, 25, 22, 27, 24, 34, 31, 36, 33, 30, 35, 32, 29, 42, 39, 45, 41, 38, 44, 40, 37, 43, 52, 48, 55, 51, 47, 54, 50, 46, 53, 49, 62, 58, 65, 61, 57, 64, 60, 56, 63, 59, 66, 74, 69, 77
Offset: 1
Examples
Northwest corner: 1...3...5...9...14..19 2...4...7...12..17..23 6...10..15..21..28..36 8...13..18..25..33..41 11..16..22..30..38..47 20..27..35..44..54..64
Programs
-
Mathematica
r = -(1 + Sqrt[3])/2; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194868 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194869 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194870 *)
Comments