A194833
Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194832; an interspersion.
Original entry on oeis.org
1, 2, 3, 5, 6, 4, 8, 10, 7, 9, 12, 14, 11, 13, 15, 18, 20, 16, 19, 21, 17, 24, 27, 22, 25, 28, 23, 26, 32, 35, 30, 33, 36, 31, 34, 29, 40, 44, 38, 42, 45, 39, 43, 37, 41, 49, 53, 47, 51, 55, 48, 52, 46, 50, 54, 60, 64, 57, 62, 66, 59, 63, 56, 61, 65, 58, 71, 76, 68
Offset: 1
Northwest corner:
1...2...5...8...12..18..24
3...6...10..14..20..27..35
4...7...11..16..22..30..38
9...13..19..25..33..42..51
15..21..28..36..45..55..66
-
r = -GoldenRatio;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]
(* A194832 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194833 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194834 *)
A374411
Triangle T(n, k) read by rows: Maximum number of linear patterns of length k in a circular permutation of length n taken from row n in A194832.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 6, 16, 5, 1, 2, 6, 20, 25, 6, 1, 2, 6, 24, 60, 36, 7, 1, 2, 6, 24, 85, 126, 49, 8, 1, 2, 6, 24, 100, 222, 196, 64, 9, 1, 2, 6, 24, 115, 390, 511, 288, 81, 10, 1, 2, 6, 24, 120, 558, 1085, 912, 405, 100, 11, 1, 2, 6, 24, 120, 654, 1911, 2328, 1458, 550, 121, 12
Offset: 1
The triangle begins:
n| k: 1| 2| 3| 4| 5| 6| 7| 8| 9
=========================================
[1] 1
[2] 1, 2
[3] 1, 2, 3
[4] 1, 2, 6, 4
[5] 1, 2, 6, 16, 5
[6] 1, 2, 6, 20, 25, 6
[7] 1, 2, 6, 24, 60, 36, 7
[8] 1, 2, 6, 24, 85, 126, 49, 8
[9] 1, 2, 6, 24, 100, 222, 196, 64, 9
.
Row 5 of A194832 is [3, 1, 4, 2, 5].
T(5, 4) = 16 because we will find these 16 distinct patterns of length 4:
[3, 1, 4, 2] [1, 4, 2, 3] [4, 2, 3, 1] [2, 3, 1, 4]
These are rotations of the ordering [1, 4, 2, 3].
[1, 4, 2, 5] [4, 2, 5, 1] [2, 5, 1, 4] [5, 1, 4, 2]
These are rotations of the ordering [1, 3, 2, 4].
[2, 5, 3, 1] [5, 3, 1, 2] [3, 1, 2, 5] [1, 2, 5, 3]
These are rotations of the ordering [1, 2, 4, 3].
[5, 3, 1, 4] [3, 1, 4, 5] [1, 4, 5, 3] [4, 5, 3, 1]
These are rotations of the ordering [1, 3, 4, 2].
A054065
Fractal sequence induced by tau: for k >= 1, let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*tau} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, 3, 8, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 13, 5, 10, 2, 7, 12, 4, 9
Offset: 1
p(1)=(1); p(2)=(2,1); p(3)=(2,1,3); p(4)=(2,4,1,3).
As a triangular array (see A194832), first nine rows:
1
2 1
2 1 3
2 4 1 3
5 2 4 1 3
5 2 4 1 6 3
5 2 7 4 1 6 3
5 2 7 4 1 6 3 8
5 2 7 4 9 1 6 3 8
Position of 1 in p(k) is given by
A019446. Position of k in p(k) is given by
A019587. For related arrays and sequences, see
A194832.
-
r = (1 + Sqrt[5])/2;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A054065 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A054069 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A054068 *)
(* Clark Kimberling, Sep 03 2011 *)
Flatten[Table[Ordering[Table[FractionalPart[GoldenRatio k], {k, n}]], {n, 10}]] (* Birkas Gyorgy, Jun 30 2012 *)
A054073
Fractal sequence induced by sqrt(2): for k >= 1 let p(k) be the permutation of 1,2,...,k obtained by ordering the fractional parts {h*sqrt(2)} for h=1,2,...,k; then juxtapose p(1),p(2),p(3),...
Original entry on oeis.org
1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 2, 7, 5, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 5, 10, 3, 8, 1, 6, 11, 4, 9, 2, 7, 12, 5, 10, 3, 8, 13, 1, 6, 11
Offset: 1
p(1)=(1); p(2)=(1,2); p(3)=(3,1,2); p(4)=(3,1,4,2).
When formatted as a triangle, the first 9 rows:
1
1 2
3 1 2
3 1 4 2
5 3 1 4 2
5 3 1 6 4 2
5 3 1 6 4 2 7
5 3 8 1 6 4 2 7
5 3 8 1 6 4 9 2 7
-
r = Sqrt[2];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]],
{n, 1, 20}]] (* A054073 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A054077 *)
q[n_] := Position[p, n]; Flatten[
Table[q[n], {n, 1, 80}]] (* A054076 *)
(* Clark Kimberling, Sep 03 2011 *)
A194905
Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=Pi.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 9, 2, 3, 4, 5, 6, 7, 8, 1, 9, 2, 10, 3, 4, 5, 6, 7, 8, 1, 9, 2, 10, 3, 11, 4, 5, 6, 7, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 6, 7, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 7, 8, 1, 9
Offset: 1
First nine rows:
1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
8 1 2 3 4 5 6 7
8 1 9 2 3 4 5 6 7
-
r = Pi;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 20}]] (* A194905 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194906 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194907 *)
A194835
Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(2).
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 5, 7, 2, 9, 4, 6, 1, 8, 3, 10, 5, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 5, 12, 7, 2, 9, 4, 11, 6, 1, 13, 8, 3, 10, 5, 12, 7, 2
Offset: 1
First nine rows:
1
2 1
2 1 3
2 4 1 3
2 4 1 3 5
2 4 6 1 3 5
7 2 4 6 1 3 5
7 2 4 6 1 8 3 5
7 2 9 4 6 1 8 3 5
-
r = -Sqrt[2];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194835 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194836 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194837 *)
A194841
Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(3).
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 2, 6, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 3, 7, 11, 4, 8, 12
Offset: 1
First nine rows:
1
1 2
1 2 3
4 1 2 3
4 1 5 2 3
4 1 5 2 6 3
4 1 5 2 6 3 7
4 8 1 5 2 6 3 7
4 8 1 5 9 2 6 3 7
-
r = -Sqrt[3];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1,20}]] (* A194841 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194842 *)
q[n_] := Position[p, n]; Flatten[
Table[q[n], {n, 1, 80}]] (* A194843 *)
A194842
Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194841; an interspersion.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 12, 14, 15, 11, 13, 17, 19, 21, 16, 18, 20, 23, 25, 27, 22, 24, 26, 28, 31, 33, 35, 29, 32, 34, 36, 30, 39, 42, 44, 37, 40, 43, 45, 38, 41, 48, 51, 54, 46, 49, 52, 55, 47, 50, 53, 58, 61, 64, 56, 59, 62, 65, 57, 60, 63, 66, 70, 73, 76
Offset: 1
Northwest corner:
1...2...4...8...12..17..23
3...5...9...14..19..25..33
6...10..15..21..27..35..44
7...11..16..22..29..37..46
13..18..24..32..40..49..59
-
r = -Sqrt[3];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1,20}]] (* A194841 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194842 *)
q[n_] := Position[p, n]; Flatten[
Table[q[n], {n, 1, 80}]] (* A194843 *)
A194868
Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-(1+sqrt(3))/2.
Original entry on oeis.org
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 6, 3, 8, 5, 2, 7, 4, 1, 9, 6, 3, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 8, 5, 2, 10, 7, 4, 1, 9, 6, 3, 11, 8, 5, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 8, 5, 13, 2, 10, 7, 4, 12, 1, 9, 6, 3, 11, 8, 5, 13
Offset: 1
First nine rows:
1
2 1
2 1 3
2 4 1 3
5 2 4 1 3
5 2 4 1 6 3
5 2 7 4 1 6 3
8 5 2 7 4 1 6 3
8 5 2 7 4 1 9 6 3
-
r = -(1 + Sqrt[3])/2;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 20}]] (* A194868 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@
Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194869 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194870 *)
A194836
Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194835; an interspersion.
Original entry on oeis.org
1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 13, 11, 14, 12, 15, 19, 16, 20, 17, 21, 18, 26, 23, 27, 24, 28, 25, 22, 33, 30, 35, 31, 36, 32, 29, 34, 42, 38, 44, 40, 45, 41, 37, 43, 39, 51, 47, 53, 49, 55, 50, 46, 52, 48, 54, 62, 57, 64, 59, 66, 61, 56, 63, 58, 65, 60, 74, 69, 76
Offset: 1
Northwest corner:
1...3...5...9...13..19..26
2...4...7...11..16..23..30
6...10..14..20..27..35..44
8...12..17..24..31..40..49
15..21..28..36..45..55..66
18..25..32..41..50..61..73
-
r = -Sqrt[2];
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194835 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194836 *)
q[n_] := Position[p, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A194837 *)
Showing 1-10 of 49 results.
Comments