A194906 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 29, 38, 40, 41, 42, 43, 44, 45, 37, 39, 47, 49, 51, 52, 53, 54, 55, 46, 48, 50, 57, 59, 61, 63, 64, 65, 66, 56, 58, 60, 62, 68, 70, 72
Offset: 1
Examples
Northwest corner: 1...2...4...7...11..16..22 3...5...8...12..17..23..31 6...9...13..18..24..32..41 10..14..19..25..33..42..52 15..20..26..34..43..53..64
Programs
-
Mathematica
r = Pi; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194905 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194906 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194907 *)
Comments