A194922
Interspersion fractally induced by A194920, a rectangular array, by antidiagonals.
Original entry on oeis.org
1, 3, 2, 6, 5, 4, 10, 9, 7, 8, 15, 14, 11, 13, 12, 21, 20, 16, 19, 18, 17, 28, 27, 22, 26, 25, 23, 24, 36, 35, 29, 34, 33, 30, 32, 31, 45, 44, 37, 43, 42, 38, 41, 40, 39, 55, 54, 46, 53, 52, 47, 51, 50, 49, 48, 66, 65, 56, 64, 63, 57, 62, 61, 60, 58, 59, 78, 77, 67
Offset: 1
Northwest corner:
1, 3, 6, 10, 15, 21
2, 5, 9, 14, 20, 27, 35
4, 7, 11, 16, 22, 29, 37
8, 13, 19, 26, 34, 43, 53
12, 18, 25, 33, 42, 52, 63
-
r = Sqrt[2]; p[n_] := n - Floor[n/r]
Table[p[n], {n, 1, 90}] (* A194920 *)
g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
f[20] (* A194921 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194922 *)
q[n_] := Position[w, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A195071 *)
A195074
Interspersion fractally induced by A194920, a rectangular array, by antidiagonals.
Original entry on oeis.org
1, 3, 2, 6, 4, 5, 10, 7, 9, 8, 15, 11, 14, 12, 13, 21, 16, 20, 17, 19, 18, 28, 22, 27, 23, 26, 25, 24, 36, 29, 35, 30, 34, 33, 31, 32, 45, 37, 44, 38, 43, 42, 39, 41, 40, 55, 46, 54, 47, 53, 52, 48, 51, 49, 50, 66, 56, 65, 57, 64, 63, 58, 62, 59, 61, 60, 78, 67, 77
Offset: 1
Northwest corner:
1...3...6...10..15..21
2...4...7...11..16..22
5...9...14..20..27..35
8...12..17..23..30..38
13..19..26..34..43..53
-
r = Sqrt[3]; p[n_] := n - Floor[n/r]
Table[p[n], {n, 1, 90}] (* A195072 *)
g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
f[20] (* A195073 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A195074 *)
q[n_] := Position[w, n]; Flatten[
Table[q[n], {n, 1, 80}]] (* A195075 *)
A194921
Fractalization of (n - [n/sqrt(2)]), where [ ]=floor.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 5, 4, 2, 1, 3, 6, 5, 4, 2, 1, 3, 6, 7, 5, 4, 2, 1, 3, 6, 8, 7, 5, 4, 2, 1, 3, 6, 9, 8, 7, 5, 4, 2, 1, 3, 6, 10, 9, 8, 7, 5, 4, 2, 1, 3, 6, 10, 11, 9, 8, 7, 5, 4, 2, 1, 3, 6, 10, 12, 11, 9, 8, 7, 5, 4, 2, 1, 3, 6, 10, 13, 12, 11, 9, 8, 7, 5, 4, 2, 1, 3, 6, 10
Offset: 1
-
r = Sqrt[2]; p[n_] := n - Floor[n/r]
Table[p[n], {n, 1, 90}] (* A194920 *)
g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
f[20] (* A194921 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194922 *)
q[n_] := Position[w, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A195071 *)
A195071
Inverse permutation of A194922; every positive integer occurs exactly once.
Original entry on oeis.org
1, 3, 2, 6, 5, 4, 9, 10, 8, 7, 13, 15, 14, 12, 11, 18, 21, 20, 19, 17, 16, 24, 27, 28, 26, 25, 23, 22, 31, 34, 36, 35, 33, 32, 30, 29, 39, 42, 45, 44, 43, 41, 40, 38, 37, 48, 51, 55, 54, 53, 52, 50, 49, 47, 46, 58, 61, 65, 66, 64, 63, 62, 60, 59, 57, 56, 69, 72, 76
Offset: 1
-
r = Sqrt[2]; p[n_] := n - Floor[n/r]
Table[p[n], {n, 1, 90}] (* A194920 *)
g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
f[20] (* A194921 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
{k, 1, n}]] (* A194922 *)
q[n_] := Position[w, n]; Flatten[Table[q[n],
{n, 1, 80}]] (* A195071 *)
A255195
Triangle describing the shape of one eighth of the Gauss circle problem.
Original entry on oeis.org
1, 2, 0, 2, 1, 0, 2, 1, 1, 0, 2, 1, 2, 0, 0, 2, 1, 1, 2, 0, 0, 2, 1, 1, 2, 1, 0, 0, 2, 1, 1, 2, 2, 0, 0, 0, 2, 1, 1, 2, 1, 2, 0, 0, 0, 2, 1, 1, 1, 2, 2, 1, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 1, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0, 2, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 0, 0
Offset: 1
1,
2, 0,
2, 1, 0,
2, 1, 1, 0,
2, 1, 2, 0, 0,
2, 1, 1, 2, 0, 0,
2, 1, 1, 2, 1, 0, 0,
2, 1, 1, 2, 2, 0, 0, 0,
2, 1, 1, 2, 1, 2, 0, 0, 0,
2, 1, 1, 1, 2, 2, 1, 0, 0, 0,
2, 1, 1, 1, 2, 1, 2, 1, 0, 0, 0,
2, 1, 1, 1, 2, 1, 2, 2, 0, 0, 0, 0,
2, 1, 1, 1, 2, 1, 2, 2, 1, 0, 0, 0, 0
-
Flatten[Table[Sum[Table[If[And[If[n^2 + k^2 <= r^2, If[n >= k, 1, 0], 0] == 1, If[(n + 1)^2 + (k + 1)^2 <= r^2, If[n >= k, 1, 0], 0]== 0], 1, 0], {k, 0, r}], {n, 0, r}], {r, 0, 12}]]
Showing 1-5 of 5 results.
Comments