A194940 The Square Peg in the Round Hole constant.
2, 8, 4, 4, 5, 8, 5, 5, 0, 4, 0, 9, 8, 0, 1, 8, 7, 8, 1, 5, 9, 2, 0, 1, 0, 1, 8, 1, 2, 6, 9, 3, 1, 7, 4, 5, 3, 3, 0, 0, 5, 2, 8, 3, 0, 7, 8, 9, 4, 6, 2, 6, 9, 8, 0, 4, 5, 8, 7, 7, 5, 0, 0, 3, 0, 1, 1, 8, 9, 8, 9, 5, 8, 4, 8, 2, 9, 2, 3, 9, 7, 5, 3, 8, 6, 9, 4, 7, 2, 3, 6, 0, 6, 2, 2, 7, 2, 2, 1, 4, 6, 7, 6, 4, 6, 1, 7, 2, 4, 4, 7
Offset: 0
Examples
0.28445855040980187815920101812693174533005283078946269804587750...
References
- Daniel Zwillinger, Editor, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall/CRC, Boca Raton, Section 4.6.6 Circles, page 334 & figure 4.18, 2003.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- 1728 Software Systems, Circle Sector, Segment, Chord and Arc Calculator.
- Eric Weisstein's World of Mathematics, Circular Segment.
- Wikipedia, Square peg in a round hole.
- Wikipedia, Squaring the circle.
- Wikipedia, Diagram of the problem.
Programs
-
Mathematica
RealDigits[ 4*ArcCos[ Sqrt[Pi]/2] - Sqrt[ Pi(4 - Pi)], 10, 111][[1]] RealDigits[Pi + Sqrt[ 2Pi(2 - Sqrt[Pi (4 - Pi)])] - 4 ArcSin[ Sqrt[Pi/4]], 10, 111][[1]] (* Robert G. Wilson v, Sep 20 2011 *)
-
PARI
4*acos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)) \\ G. C. Greubel, Mar 28 2017
Formula
Area = 4*arccos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)).
Area = Pi + sqrt(2*Pi(2 - sqrt(Pi*(4 - Pi)))) - 4*arcsin(sqrt(Pi/4)). - Robert G. Wilson v, Mar 19 2014
Comments