cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194940 The Square Peg in the Round Hole constant.

Original entry on oeis.org

2, 8, 4, 4, 5, 8, 5, 5, 0, 4, 0, 9, 8, 0, 1, 8, 7, 8, 1, 5, 9, 2, 0, 1, 0, 1, 8, 1, 2, 6, 9, 3, 1, 7, 4, 5, 3, 3, 0, 0, 5, 2, 8, 3, 0, 7, 8, 9, 4, 6, 2, 6, 9, 8, 0, 4, 5, 8, 7, 7, 5, 0, 0, 3, 0, 1, 1, 8, 9, 8, 9, 5, 8, 4, 8, 2, 9, 2, 3, 9, 7, 5, 3, 8, 6, 9, 4, 7, 2, 3, 6, 0, 6, 2, 2, 7, 2, 2, 1, 4, 6, 7, 6, 4, 6, 1, 7, 2, 4, 4, 7
Offset: 0

Views

Author

Keywords

Comments

Given a unit circle and a square of equal area, what is the amount of the square peg shavings (or filings) which would allow the peg to be inserted into the circle? It turns out to be not quite two sevenths.

Examples

			0.28445855040980187815920101812693174533005283078946269804587750...
		

References

  • Daniel Zwillinger, Editor, CRC Standard Mathematical Tables and Formulae, 31st Edition, Chapman & Hall/CRC, Boca Raton, Section 4.6.6 Circles, page 334 & figure 4.18, 2003.

Crossrefs

Programs

  • Mathematica
    RealDigits[ 4*ArcCos[ Sqrt[Pi]/2] - Sqrt[ Pi(4 - Pi)], 10, 111][[1]]
    RealDigits[Pi + Sqrt[ 2Pi(2 - Sqrt[Pi (4 - Pi)])] - 4 ArcSin[ Sqrt[Pi/4]], 10, 111][[1]] (* Robert G. Wilson v, Sep 20 2011 *)
  • PARI
    4*acos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)) \\ G. C. Greubel, Mar 28 2017

Formula

Area = 4*arccos(sqrt(Pi)/2) - sqrt(Pi*(4-Pi)).
Area = Pi + sqrt(2*Pi(2 - sqrt(Pi*(4 - Pi)))) - 4*arcsin(sqrt(Pi/4)). - Robert G. Wilson v, Mar 19 2014