A194955 Slowest increasing sequence of primes such that a(1)=2, a(n)-a(n-1) is a multiple of A000120(a(n-1)).
2, 3, 5, 7, 13, 19, 31, 41, 47, 67, 73, 79, 89, 97, 103, 113, 137, 149, 157, 167, 197, 229, 239, 281, 293, 313, 353, 373, 379, 421, 431, 487, 557, 577, 601, 631, 659, 709, 719, 733, 761, 859, 887, 911, 953, 967, 1009, 1051, 1061, 1069, 1109, 1129, 1229, 1259, 1301
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A000120 := proc(n) wt(n) ; end proc: A194955 := proc(n) option remember; local p; if n = 1 then 2; else p := nextprime(procname(n-1)) ; while (p-procname(n-1)) mod A000120(procname(n-1)) <> 0 do p := nextprime(p); end do; p ; end if; end proc: seq(A194955(n),n=1..80) ; # R. J. Mathar, Sep 20 2011
-
Mathematica
a[1] = 2; a[n_] := a[n] = Module[{k = a[n - 1], s = DigitCount[a[n - 1], 2, 1]}, k += s; While[! PrimeQ[k], k += s]; k]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)