cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A195100 Numbers n such that there are no primes between (n-1)*sqrt(n-1) and n*sqrt(n).

Original entry on oeis.org

1, 11, 21, 25, 28, 33, 66, 122, 140, 142, 188, 307, 322, 349, 1007, 1052
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 09 2011

Keywords

Comments

Cramér's conjecture implies that the sequence is finite. - Robert Israel, Aug 11 2014
No more terms up to 2*10^10. - Jinyuan Wang, Mar 22 2019

Examples

			a(1) = 1 because there are no numbers between (1-1)*sqrt(1-1) = 0 and 1*sqrt(1) = 1.
a(2) = 11 because (11-1)*sqrt(11-1) < (nonprimes 32,33,34,35,36) < 11*sqrt(11).
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,{2,seq(2*i+1,i=1..10^6)}):
    C:= map(p -> ceil(p^(2/3)), Primes);
    {$1..max(C)} minus C; # Robert Israel, Aug 10 2014
  • Mathematica
    Select[Range[5000], (PrimePi[# Sqrt[#]] - PrimePi[(# - 1)Sqrt[# - 1]]) == 0 &] (* Alonso del Arte, Sep 09 2011 *)
    Join[{1},Flatten[Position[Partition[Table[PrimePi[n Sqrt[n]],{n,1100}], 2,1], ?(#[[2]]-#[[1]]==0&),1,Heads->False]]+1] (* _Harvey P. Dale, May 11 2018 *)
  • PARI
    for(n=1,2*10^6,if(#primes([(n-1)*sqrt(n-1),n*sqrt(n)])==0,print1(n,", "))) \\ Derek Orr, Aug 10 2014
    
  • PARI
    isok(n) = {k=floor((n-1)*sqrt(n-1))+1;while(!isprime(k),k++);k>n*sqrt(n);} \\ Jinyuan Wang, Mar 22 2019

Formula

a(n+1) = A144140(n) + 1. - Jinyuan Wang, Mar 22 2019
Showing 1-1 of 1 results.