A195036 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [15, 8, 17]. The edges of the spiral have length A195035.
0, 15, 23, 53, 69, 114, 138, 198, 230, 305, 345, 435, 483, 588, 644, 764, 828, 963, 1035, 1185, 1265, 1430, 1518, 1698, 1794, 1989, 2093, 2303, 2415, 2640, 2760, 3000, 3128, 3383, 3519, 3789, 3933, 4218, 4370, 4670, 4830, 5145, 5313, 5643, 5819, 6164, 6348
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Ron Knott, Pythagorean triangles and triples
- Eric Weisstein's World of Mathematics, Pythagorean Triple
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(2*n*(23*n+53)-(14*n+37)*(-1)^n+37)/16: n in [0..46]]; // Bruno Berselli, Sep 30 2011
-
PARI
a(n)=(2*n*(23*n+53)-(14*n+37)*(-1)^n+37)/16 \\ Charles R Greathouse IV, Oct 07 2015
Formula
From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(15+8*x)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(23*n+53) - (14*n+37)*(-1)^n + 37)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
Extensions
More terms from Bruno Berselli, Sep 30 2011
Comments