A195039 23 times triangular numbers.
0, 23, 69, 138, 230, 345, 483, 644, 828, 1035, 1265, 1518, 1794, 2093, 2415, 2760, 3128, 3519, 3933, 4370, 4830, 5313, 5819, 6348, 6900, 7475, 8073, 8694, 9338, 10005, 10695, 11408, 12144, 12903, 13685, 14490, 15318, 16169, 17043, 17940, 18860
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
23*Accumulate[Range[0,40]] (* or *) LinearRecurrence[{3,-3,1},{0,23,69},50] (* Harvey P. Dale, Aug 28 2012 *)
-
PARI
a(n)=23*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = (23*n^2 + 23*n)/2 = 23*n*(n+1)/2 = 23*A000217(n).
a(0)=0, a(1)=23, a(2)=69, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 28 2012
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 23*x/(1-x)^3.
E.g.f.: 23*exp(x)*x*(2 + x)/2.
a(n) = A069174(n+1) - 1. (End)
Comments