A195050 Square array T(n,k) read by antidiagonals in which column k lists the number of divisors of n that are divisible by k.
1, 2, 0, 2, 1, 0, 3, 0, 0, 0, 2, 2, 1, 0, 0, 4, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 1, 0
Offset: 1
Examples
Array begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,... 3, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,... 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,... 4, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0,... 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,... 4, 3, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0,... 3, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0,... 4, 2, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0,... 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,... 6, 4, 3, 2, 0, 2, 0, 0, 0, 0, 0, 1,...
Links
- Omar E. Pol, Illustration of initial terms of column 1
Programs
-
Mathematica
(* returns square array *) nn = 20; Transpose[Table[Table[DirichletConvolve[1, Floor[n/k] - Floor[(n - 1)/k], n, m], {m, 1,nn}], {k, 1, nn}]] // Grid (* Geoffrey Critzer, Feb 07 2015 *)
Formula
Dirichlet generating function of column k: zeta(s)*Sum_{n>=1}1/(k*n)^s. - Geoffrey Critzer, Feb 07 2015
Comments