A195083 Interspersion fractally induced by (1+[2*n/3]), where [ ] = floor; a rectangular array, by antidiagonals.
1, 2, 3, 4, 5, 6, 7, 8, 10, 9, 11, 12, 15, 13, 14, 16, 17, 21, 18, 19, 20, 22, 23, 28, 24, 25, 27, 26, 29, 30, 36, 31, 32, 35, 33, 34, 37, 38, 45, 39, 40, 44, 41, 42, 43, 46, 47, 55, 48, 49, 54, 50, 51, 53, 52, 56, 57, 66, 58, 59, 65, 60, 61, 64, 62, 63, 67, 68, 78
Offset: 1
Examples
Northwest corner: 1 2 4 7 11 16 3 5 8 12 17 23 6 10 15 21 28 36 9 13 18 24 31 39 14 19 25 32 40 49
Programs
-
Mathematica
r = 2/3; p[n_] := 1 + Floor[n*r] Table[p[n], {n, 1, 90}] (* ess A004396 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A195082 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A195083 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A195096 *)
Comments