cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195094 G.f.: Sum_{n>=1} -moebius(2*n)*x^n/(1-x^n)^3.

Original entry on oeis.org

1, 3, 5, 10, 14, 18, 27, 36, 39, 52, 65, 68, 90, 102, 100, 136, 152, 150, 189, 200, 198, 250, 275, 264, 310, 348, 333, 396, 434, 392, 495, 528, 490, 592, 588, 588, 702, 738, 684, 784, 860, 780, 945, 980, 876, 1078, 1127, 1040, 1197, 1220, 1168, 1368, 1430, 1314, 1460, 1560, 1458, 1708
Offset: 1

Views

Author

Paul D. Hanna, Sep 08 2011

Keywords

Comments

Compare the g.f. of this sequence to the following identities:
. Sum_{n>=1} -moebius(2*n)*x^n/(1-x^n)^2 = Sum_{n>=1} phi(2*n)*x^n;
. Sum_{n>=1} -moebius(2*n)*x^n/(1-x^n) = Sum_{n>=0} x^(2^n).

Examples

			G.f.: A(x) = x + 3*x^2 + 5*x^3 + 10*x^4 + 14*x^5 + 18*x^6 + 27*x^7 +...
where A(x) = x/(1-x^1)^3 + 0*x^2/(1-x^2)^3 - x^3/(1-x^3)^3 + 0*x^4/(1-x^4)^3 - x^5/(1-x^5)^3 + 0*x^6/(1-x^6)^3 - x^7/(1-x^7)^3 + 0*x^8/(1-x^8)^3 + 0*x^9/(1-x^9)^3 + 0*x^10/(1-x^10)^3 - x^11/(1-x^11)^3 +...
		

Programs

  • PARI
    {a(n)=polcoeff(sum(m=1,n,-moebius(2*m)*x^m/(1-x^m+x*O(x^n))^3),n)}

Formula

a(2^n) = 2^(n-1)*(1 + 2^n) for n>=1.