A195097 Fractalization of (1+[3n/4]), where [ ] = floor.
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 5, 4, 1, 2, 3, 5, 6, 4, 1, 2, 3, 5, 6, 7, 4, 1, 2, 3, 5, 6, 7, 8, 4, 1, 2, 3, 5, 6, 7, 9, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 12, 8, 4, 1, 2, 3
Offset: 1
Keywords
Programs
-
Mathematica
r = 3/4; p[n_] := 1 + Floor[n*r] (* A037915 *) Table[p[n], {n, 1, 90}] g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A195097 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]](* A195098 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]](* A195099 *)
Comments