cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195268 Numbers whose sum of odd divisors is prime.

Original entry on oeis.org

9, 18, 25, 36, 50, 72, 100, 144, 200, 288, 289, 400, 576, 578, 729, 800, 1152, 1156, 1458, 1600, 1681, 2304, 2312, 2401, 2916, 3200, 3362, 3481, 4608, 4624, 4802, 5041, 5832, 6400, 6724, 6962, 7921, 9216, 9248, 9604, 10082, 10201, 11664, 12800
Offset: 1

Views

Author

Michel Lagneau, Sep 14 2011

Keywords

Comments

Odd numbers k^2 such that sigma(k^2) is prime, times an arbitrary power of two. - Charles R Greathouse IV, Sep 14 2011

Examples

			The divisors of 2312 are { 1, 2, 4, 8, 17, 34, 68, 136, 289, 578, 1156, 2312 }, and the sum of the odd divisors 1 + 17 + 289 = 307 is prime. Hence 2312 = 2*34^2 is in the sequence.
		

Crossrefs

Subsequence of A028982.

Programs

  • Maple
    with(numtheory):for n from 1 to 20000 do:x:=divisors(n):n1:=nops(x):s:=0:for m from 1 to n1 do:if irem(x[m],2)=1 then s:=s+x[m]:fi:od:if type(s,prime)=true  then printf(`%d, `,n): else fi:od:
  • Mathematica
    Select[Range[13000], PrimeQ[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    list(lim)=my(v=List(),t);forstep(k=3,sqrt(lim),2,if(isprime(sigma(t=k^2)),listput(v,t);while((t<<=1)<=lim,listput(v,t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 14 2011