A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A195286 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(5,12,13).
4, 0, 7, 9, 2, 1, 5, 6, 1, 0, 8, 7, 4, 2, 2, 7, 8, 6, 4, 0, 2, 2, 5, 7, 9, 2, 8, 7, 2, 1, 8, 2, 2, 5, 5, 9, 1, 6, 5, 1, 0, 1, 6, 7, 5, 6, 8, 7, 9, 6, 7, 7, 1, 2, 6, 0, 6, 7, 9, 7, 6, 6, 4, 3, 5, 4, 0, 7, 4, 6, 9, 0, 5, 6, 4, 9, 7, 7, 9, 3, 5, 6, 4, 7, 0, 6, 7, 9, 0, 8, 0, 8, 7, 5, 1, 4, 5, 6, 0, 6
Offset: 1
Comments
See A195284 for definitions and a general discussion.
Examples
(A)=4.0792156108742278640225792872182255...
Programs
-
Mathematica
a = 5; b = 12; c = 13; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195286 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (B) A195288 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A010487 *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(A,B,C,I) A195289 *)
A195289 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 3,4,5 right triangle ABC.
4, 8, 4, 7, 8, 2, 3, 8, 5, 3, 6, 6, 1, 7, 5, 3, 4, 8, 3, 3, 5, 1, 6, 5, 4, 1, 8, 0, 2, 2, 8, 1, 1, 5, 2, 7, 8, 0, 8, 8, 2, 5, 5, 4, 5, 2, 2, 8, 2, 5, 9, 9, 2, 3, 4, 1, 2, 9, 5, 4, 4, 3, 3, 4, 6, 0, 2, 1, 8, 8, 6, 9, 4, 6, 2, 9, 6, 2, 9, 3, 6, 8, 4, 9, 2, 7, 9, 5, 9, 9, 8, 0, 7, 0, 1, 2, 2, 0, 6, 2
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
Philo(ABC,I)=0.4847823853661753483351654180...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 5; b = 12; c = 13; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195286 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (B) A195288 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A010487 *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(A,B,C,I) A195289 *)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions