A195303 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,1,sqrt(2) right triangle ABC.
6, 1, 4, 0, 5, 8, 9, 7, 1, 0, 3, 2, 2, 1, 2, 6, 1, 1, 5, 4, 6, 3, 8, 4, 8, 9, 2, 5, 3, 9, 3, 8, 5, 4, 0, 8, 2, 6, 0, 3, 6, 7, 3, 8, 6, 8, 9, 6, 9, 9, 6, 8, 9, 2, 7, 6, 4, 7, 9, 4, 1, 9, 1, 7, 6, 7, 3, 2, 8, 5, 7, 4, 5, 1, 7, 0, 3, 8, 0, 3, 8, 4, 9, 2, 8, 5, 5, 8, 3, 1, 6, 0, 3, 1, 2, 0, 5, 5, 1, 2
Offset: 0
Examples
Philo(ABC,I)=0.614058971032212611546384892539385408260...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = 1; c = Sqrt[2]; h = a (a + c)/(a + b + c); k = a*b/(a + b + c); f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2; s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (A) A195301 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B)=(A) *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A163960 *) (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,I), A195303 *)
-
PARI
(3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))) \\ Michel Marcus, Jul 27 2018
Formula
Equals (3*sqrt(2)-4)*(1+2*sqrt(2-sqrt(2))).
Comments