A195342 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).
1, 0, 8, 0, 3, 6, 3, 0, 2, 6, 9, 5, 0, 9, 0, 5, 8, 1, 4, 4, 0, 6, 1, 7, 2, 6, 2, 8, 1, 9, 6, 3, 7, 5, 7, 0, 1, 9, 8, 9, 4, 6, 0, 4, 8, 6, 8, 0, 5, 6, 2, 7, 3, 9, 2, 6, 7, 2, 5, 3, 4, 3, 6, 1, 1, 7, 9, 6, 0, 2, 9, 9, 6, 7, 4, 7, 0, 8, 2, 8, 9, 5, 2, 0, 6, 9, 1, 4, 4, 9, 4, 6, 0, 3, 6, 2, 4, 4, 2, 3
Offset: 1
Examples
(C)=1.0803630269509058144061726281963757019894604...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = 2; c = Sqrt[5]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]; x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]; x3 = f*Sqrt[2]; N[x1, 100] RealDigits[%] (* (A) A195340 *) N[x2, 100] RealDigits[%] (* (B) A195341 *) N[x3, 100] RealDigits[%] (* (C) A195342 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195343 *)
-
PARI
4*sqrt(2)/(3 + sqrt(5)) \\ Charles R Greathouse IV, Feb 22 2025
Comments