A195345 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,3,sqrt(10)).
1, 0, 3, 2, 6, 4, 1, 4, 9, 1, 2, 0, 9, 3, 4, 7, 3, 6, 1, 4, 7, 5, 6, 3, 7, 6, 5, 5, 6, 5, 7, 6, 1, 1, 4, 8, 5, 4, 1, 4, 2, 2, 0, 1, 8, 5, 8, 1, 6, 7, 1, 1, 5, 6, 8, 9, 2, 7, 0, 6, 5, 3, 6, 1, 1, 0, 5, 5, 7, 9, 5, 0, 5, 3, 9, 8, 2, 3, 3, 0, 2, 4, 9, 7, 6, 0, 2, 8, 0, 4, 2, 2, 8, 7, 6, 6, 4, 8, 1, 9
Offset: 1
Examples
(B)=1.0326414912093473614756376556576114854142201858...
Crossrefs
Cf. A195284.
Programs
-
Mathematica
a = 1; b = 3; c = Sqrt[10]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* A195344 *) N[x2, 100] RealDigits[%] (* A195345 *) N[x3, 100] RealDigits[%] (* A195346 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195347 *)
-
PARI
(6*sqrt(20 + sqrt(40)))/(14 + 5*sqrt(10)) \\ Charles R Greathouse IV, Feb 11 2025
Comments