A195349 Numbers n such that Sum_{k=1..n} d(k) divides Product_{k=1..n} d(k), where d(k) is the number of divisors of k.
1, 7, 19, 41, 57, 64, 68, 133, 145, 149, 164, 235, 267, 291, 317, 336, 358, 419, 433, 503, 528, 566, 599, 612, 659, 726, 801, 927, 1017, 1035, 1077, 1118, 1190, 1206, 1213, 1281, 1297, 1309, 1320, 1323, 1367, 1446, 1473, 1485, 1516, 1595, 1611, 1634, 1941
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..2000 (term 1..500 from Harvey P. Dale)
Programs
-
Mathematica
t = {}; a = 0; b = 1; Do[a = a + DivisorSigma[0, n]; b = b*DivisorSigma[0, n]; If[Mod[b, a] == 0, AppendTo[t, n]], {n, 2000}]; t (* T. D. Noe, Sep 16 2011 *) With[{c=DivisorSigma[0,Range[2000]]},Position[Thread[{FoldList[ Times,c], Accumulate[ c]}],?(Divisible[#[[1]],#[[2]]]&),1,Heads->False]] // Flatten (* _Harvey P. Dale, Apr 14 2019 *)
-
Python
from sympy import divisor_count A195349_list, s, p = [], 0, 1 for k in range(1,10**4): d = divisor_count(k) s += d p *= d if p % s == 0: A195349_list.append(k) # Chai Wah Wu, Oct 09 2021
Comments