A195369 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
7, 1, 5, 7, 9, 0, 1, 3, 5, 9, 8, 9, 9, 1, 4, 9, 5, 4, 5, 9, 5, 4, 9, 2, 6, 7, 2, 3, 3, 3, 4, 3, 2, 4, 9, 4, 5, 6, 6, 3, 6, 8, 3, 0, 6, 5, 6, 7, 0, 5, 1, 1, 4, 4, 1, 8, 8, 8, 6, 9, 2, 2, 0, 1, 8, 3, 4, 5, 3, 8, 4, 6, 2, 9, 2, 9, 5, 3, 1, 9, 3, 5, 2, 3, 4, 0, 5, 2, 5, 0, 1, 4, 2, 2, 0, 5, 7, 7, 6, 9
Offset: 0
Examples
(A)=0.7157901359899149545954926723334324945663...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = 1; b = Sqrt[2]; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195369 *) N[x2, 100] RealDigits[%] (* (B) A195370 *) N[x3, 100] RealDigits[%] (* (C) A195371 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195372 *)
Comments