A195284 Decimal expansion of shortest length of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(3,4,5); i.e., decimal expansion of 2*sqrt(10)/3.
2, 1, 0, 8, 1, 8, 5, 1, 0, 6, 7, 7, 8, 9, 1, 9, 5, 5, 4, 6, 6, 5, 9, 2, 9, 0, 2, 9, 6, 2, 1, 8, 1, 2, 3, 5, 5, 8, 1, 3, 0, 3, 6, 7, 5, 9, 5, 5, 0, 1, 4, 4, 5, 5, 1, 2, 3, 8, 3, 3, 6, 5, 6, 8, 5, 2, 8, 3, 9, 6, 2, 9, 2, 4, 2, 6, 1, 5, 8, 8, 1, 4, 2, 2, 9, 4, 9, 8, 7, 3, 8, 9, 1, 9, 5, 3, 3, 5, 3, 0
Offset: 1
A195370 Decimal expansion of shortest length, (B), of segment from side BC through incenter to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
7, 6, 8, 1, 3, 7, 4, 3, 2, 6, 1, 5, 5, 3, 6, 7, 6, 0, 7, 0, 1, 5, 3, 4, 5, 2, 1, 1, 1, 9, 2, 8, 7, 9, 5, 5, 0, 9, 2, 6, 7, 1, 9, 8, 8, 4, 5, 0, 7, 8, 6, 7, 6, 3, 0, 3, 4, 0, 7, 8, 5, 3, 7, 8, 0, 6, 5, 4, 5, 6, 6, 3, 0, 0, 7, 0, 5, 7, 3, 9, 6, 9, 0, 4, 7, 0, 2, 3, 1, 0, 7, 9, 2, 1, 7, 7, 0, 7, 3, 4
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
(B)=0.76813743261553676070153452111928795509267198845...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = 1; b = Sqrt[2]; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195369 *) N[x2, 100] RealDigits[%] (* (B) A195370 *) N[x3, 100] RealDigits[%] (* (C) A195371 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195372 *)
A195371 Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(2),sqrt(3)).
9, 6, 4, 7, 2, 3, 8, 1, 9, 5, 8, 9, 9, 1, 6, 9, 5, 0, 6, 0, 4, 4, 0, 4, 6, 4, 9, 5, 0, 3, 8, 0, 6, 6, 8, 6, 6, 0, 3, 7, 2, 4, 3, 9, 4, 7, 2, 0, 2, 7, 7, 9, 4, 4, 7, 4, 3, 9, 8, 7, 1, 7, 0, 7, 3, 9, 7, 7, 2, 1, 0, 1, 0, 0, 4, 7, 9, 2, 0, 1, 2, 3, 1, 0, 5, 2, 8, 1, 0, 1, 2, 2, 3, 0, 0, 1, 3, 3, 7, 9
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
(C)=0.96472381958991695060440464950380668660...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = 1; b = Sqrt[2]; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195369 *) N[x2, 100] RealDigits[%] (* (B) A195370 *) N[x3, 100] RealDigits[%] (* (C) A195371 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195372 *)
A195372 Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a 1,sqrt(2),sqrt(3) right triangle ABC.
5, 9, 0, 5, 6, 8, 0, 8, 0, 0, 1, 5, 9, 9, 7, 1, 3, 4, 3, 7, 4, 7, 0, 4, 6, 4, 4, 1, 6, 4, 6, 5, 0, 5, 6, 6, 9, 4, 4, 1, 0, 3, 2, 9, 4, 1, 9, 3, 4, 2, 2, 8, 8, 8, 7, 8, 2, 6, 1, 4, 8, 0, 1, 3, 7, 9, 5, 6, 6, 0, 0, 7, 2, 4, 2, 4, 6, 8, 5, 7, 1, 9, 9, 1, 0, 8, 4, 5, 3, 9, 5, 3, 6, 8, 5, 5, 6, 5, 0, 7
Offset: 0
Comments
See A195284 for definitions and a general discussion.
Examples
Philo(ABC,I)=0.590568080015997134374704644164650566944103294...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
a = 1; b = Sqrt[2]; c = Sqrt[3]; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195369 *) N[x2, 100] RealDigits[%] (* (B) A195370 *) N[x3, 100] RealDigits[%] (* (C) A195371 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* Philo(ABC,I) A195372 *)
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula
Extensions