A195423 Decimal expansion of -2B = sum(r in Z, 1/(r*(1-r))), where Z is the set of zeros of the Riemann zeta function which lie in the strip 0 <= Re(z) <= 1.
0, 4, 6, 1, 9, 1, 4, 1, 7, 9, 3, 2, 2, 4, 2, 0, 6, 7, 6, 2, 8, 6, 2, 0, 4, 9, 5, 8, 1, 2, 9, 9, 0, 5, 8, 3, 2, 4, 3, 8, 6, 4, 2, 5, 4, 3, 0, 4, 1, 0, 1, 5, 1, 9, 0, 5, 0, 7, 8, 4, 1, 4, 4, 4, 2, 5, 9, 4, 2, 7, 1, 2, 9, 5, 3, 4, 4, 9, 1, 5, 9, 9, 4, 1, 5, 9, 7, 1, 3, 9, 0, 2, 3, 4, 1, 9, 6, 6, 6, 7, 2
Offset: 0
Examples
-2B = gamma + 2 - log(4*Pi) = 0.046191417932242...
Programs
-
Mathematica
RealDigits[ N[ EulerGamma + 2 - Log[4*Pi], 105], 10, 100] [[1]]
-
PARI
Euler-log(4*Pi)+2 \\ Charles R Greathouse IV, Mar 10 2016
Formula
As a constant, equals 2*A074760.
Comments