cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074760 Decimal expansion of lambda(1) in Li's criterion.

Original entry on oeis.org

0, 2, 3, 0, 9, 5, 7, 0, 8, 9, 6, 6, 1, 2, 1, 0, 3, 3, 8, 1, 4, 3, 1, 0, 2, 4, 7, 9, 0, 6, 4, 9, 5, 2, 9, 1, 6, 2, 1, 9, 3, 2, 1, 2, 7, 1, 5, 2, 0, 5, 0, 7, 5, 9, 5, 2, 5, 3, 9, 2, 0, 7, 2, 2, 1, 2, 9, 7, 1, 3, 5, 6, 4, 7, 6, 7, 2, 4, 5, 7, 9, 9, 7, 0, 7, 9, 8, 5, 6, 9, 5, 1, 1, 7, 0, 9, 8, 3, 3, 3, 6, 4, 3, 0
Offset: 0

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Comments

Decimal expansion of -B =(1/2)*sum(r in Z, 1/r/(1-r)) where Z is the set of zeros of the Riemann zeta function which lie in the strip 0 <= Re(z) <= 1.
According to Gun, Murty, & Rath (2018), it is not even known whether this constant is rational or not (though see Theorem 3.1), though they show that it is transcendental under Schanuel’s conjecture. - Charles R Greathouse IV, Nov 12 2021

Examples

			0.023095708966121033814310247906495291621932127152050759525392...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications Inc. 1974, p. 160.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.6.2, 2.21, and 2.32, pp. 42, 168, 204.
  • S. J. Patterson, "An introduction to the theory of the Riemann Zeta-function", Cambridge Studies in Advanced Mathematics 14, p. 34.

Crossrefs

Cf. A002410 (nearest integer to imaginary part of n-th zeta zero), A195423 (twice the constant).
Cf. A104539 (lambda_2), A104540 (lambda_3), A104541 (lambda_4), A104542 (lambda_5).
Cf. A306339 (lambda_6), A306340 (lambda_7), A306341 (lambda_8).

Programs

  • Mathematica
    RealDigits[EulerGamma/2 + 1 - Log[4 Pi]/2, 10, 110][[1]]
  • PARI
    Euler/2+1-log(4*Pi)/2 \\ Charles R Greathouse IV, Jan 26 2012

Formula

-B = Gamma/2 + 1 - log(4*Pi)/2 = 0.0230957...

Extensions

Name simplified by Eric W. Weisstein, Feb 08 2019

A245275 Decimal expansion of sum_{r in Z}(1/r^2) where Z is the set of all nontrivial zeros r of the Riemann zeta function.

Original entry on oeis.org

0, 4, 6, 1, 5, 4, 3, 1, 7, 2, 9, 5, 8, 0, 4, 6, 0, 2, 7, 5, 7, 1, 0, 7, 9, 9, 0, 3, 7, 9, 0, 7, 7, 3, 0, 3, 5, 3, 0, 2, 6, 7, 9, 6, 2, 3, 2, 4, 1, 4, 4, 9, 9, 0, 3, 4, 8, 8, 4, 8, 4, 5, 3, 5, 0, 8, 0, 4, 2, 6, 7, 6, 2, 4, 9, 6, 6, 6, 9, 5, 5, 4, 7, 0, 1, 3, 2, 2, 6, 3, 3, 2, 2, 7, 9, 1, 0, 8, 0, 8, 8, 3, 1, 1, 8
Offset: 0

Views

Author

Jean-François Alcover, Jul 16 2014

Keywords

Examples

			-0.046154317295804602757107990379077303530267962324144990348848453508...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.21 Stieltjes Constants, p. 168.

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[-Pi^2/8 + EulerGamma^2 + 2*StieltjesGamma[1] + 1, 10, 104] // First]
  • PARI
    -Pi^2/8+Euler^2+1+2*intnum(x=0,oo,(1/tanh(Pi*x)-1)*(x*log(1+x^2)-2*atan(x))/(2*(1+x^2))) \\ Charles R Greathouse IV, Mar 10 2016

Formula

-Pi^2/8 + gamma^2 + 2*gamma(1) + 1, where gamma is Euler's constant and gamma(1) is the first Stieltjes constant.

A245276 Decimal expansion of sum_{r in Z}(1/r^3) where Z is the set of all nontrivial zeros r of the Riemann zeta function.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 5, 8, 2, 3, 1, 4, 5, 2, 1, 0, 5, 9, 2, 2, 7, 6, 2, 6, 6, 8, 2, 3, 8, 9, 1, 4, 5, 7, 8, 4, 7, 3, 9, 6, 4, 1, 8, 9, 2, 4, 8, 9, 8, 6, 5, 1, 8, 7, 7, 0, 2, 7, 3, 4, 5, 2, 6, 7, 2, 8, 9, 1, 2, 1, 3, 0, 0, 0, 6, 2, 6, 2, 4, 0, 2, 2, 6, 6, 8, 2, 9, 8, 1, 0, 0, 3, 4, 8, 1, 3, 6, 6, 9, 9, 4, 1, 8, 0, 1
Offset: 0

Views

Author

Jean-François Alcover, Jul 16 2014

Keywords

Examples

			-0.000111158231452105922762668238914578473964189248986518770273452672891213...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.21 Stieltjes Constants, p. 168.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0, 0}, RealDigits[-7*Zeta[3]/8 + EulerGamma^3 + 3*EulerGamma*StieltjesGamma[1] + 3/2*StieltjesGamma[2] + 1, 10, 103] // First]

Formula

-7*zeta(3)/8 + gamma^3 + 3*gamma*gamma(1) + 3/2*gamma(2) + 1, where gamma is Euler's constant and gamma(n) is the n-th Stieltjes constant.

A233825 Decimal expansion of Nicolas's constant in his condition for the Riemann Hypothesis (RH).

Original entry on oeis.org

3, 6, 4, 4, 4, 1, 5, 0, 9, 6, 4, 0, 7, 3, 7, 0, 1, 4, 1, 0, 6, 5, 1, 1, 6, 1, 9, 2, 8, 3, 5, 1, 4, 8, 1, 6, 0, 0, 5, 2, 2, 6, 0, 2, 4, 6, 6, 4, 3, 2, 4, 2, 4, 5, 6, 8, 5, 2, 4, 6, 3, 7, 5, 8, 2, 6, 3, 7, 4, 1, 7, 3, 4, 8, 0, 9, 2, 9, 5, 8, 1, 8, 6, 8, 3, 2, 3, 0, 5, 7, 0, 5, 1, 7, 5, 1, 2, 6, 1, 6, 1, 5, 5, 6, 4, 1, 4, 3, 3, 5, 5, 3, 1, 7, 7, 5, 2, 9, 2, 7
Offset: 1

Views

Author

Jonathan Sondow, Dec 19 2013

Keywords

Comments

Nicolas proved that RH is true if and only if limsup_{n-->infinity} (n/phi(n) - e^gamma*log(log(n)))*sqrt(log(n)) = e^gamma*(4 + gamma - log(4*Pi)), where phi(n) = A000010(n).

Examples

			3.64441509640737014106511619283514816005226024664324245685246375826374...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[EulerGamma]*(4 + EulerGamma - Log[4*Pi]), 10, 120][[1]] (* Amiram Eldar, May 25 2023 *)
  • PARI
    exp(Euler)*(4 + Euler - log(4*Pi)) \\ Charles R Greathouse IV, Mar 10 2016

Formula

Equals e^gamma*(4 + gamma - log(4*Pi)), where gamma is the Euler-Mascheroni constant.
Equals e^gamma*(2 + beta), where beta = Sum 1/(rho*(1-rho)), where rho runs over all nonreal zeros of the zeta function.
Showing 1-4 of 4 results.