cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195435 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,2,sqrt(5)).

Original entry on oeis.org

1, 3, 8, 7, 3, 1, 2, 7, 2, 8, 3, 1, 3, 8, 2, 0, 9, 1, 7, 4, 6, 3, 3, 6, 0, 2, 4, 0, 9, 8, 2, 2, 3, 3, 2, 1, 2, 5, 9, 6, 4, 4, 1, 8, 6, 2, 5, 1, 6, 9, 7, 6, 7, 6, 7, 4, 7, 6, 5, 4, 1, 2, 8, 4, 2, 3, 5, 6, 2, 8, 3, 4, 5, 5, 0, 0, 9, 7, 1, 9, 7, 9, 4, 1, 5, 3, 7, 9, 6, 0, 7, 3, 5, 5, 9, 4, 5, 3, 7, 4
Offset: 1

Views

Author

Clark Kimberling, Sep 18 2011

Keywords

Comments

See A195304 for definitions and a general discussion.

Examples

			(B)=1.387312728313820917463360240982233212...
		

Crossrefs

Cf. A195304.

Programs

  • Mathematica
    a = 1; b = 2; h = 2 a/3; k = b/3;
    f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f1 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (A) A195434 *)
    f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f2 = (f[t])^(1/2) /. Part[s, 4]
    RealDigits[%, 10, 100] (* (B) A195435 *)
    f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
    s = NSolve[D[f[t], t] == 0, t, 150]
    f3 = (f[t])^(1/2) /. Part[s, 1]
    RealDigits[%, 10, 100] (* (C) A195444 *)
    c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
    RealDigits[%, 10, 100] (* Philo(ABC,G) A195445 *)
  • PARI
    sqrt(subst((9*t^4 - 30*t^3 + 41*t^2 - 28*t + 8)/(9*t^2 - 12*t + 4), t, polrootsreal(27*t^3 - 54*t^2 + 36*t - 4)[1])) \\ Charles R Greathouse IV, Feb 11 2025
    
  • PARI
    polrootsreal(729*x^6 - 1215*x^4 - 297*x^2 - 125)[2] \\ Charles R Greathouse IV, Feb 11 2025