cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195458 a(n) = floor(sqrt(n)) * a(n-1), starting with 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 23328, 69984, 279936, 1119744, 4478976, 17915904, 71663616, 286654464, 1146617856, 4586471424, 18345885696, 91729428480, 458647142400, 2293235712000, 11466178560000, 57330892800000, 286654464000000
Offset: 1

Views

Author

Peter Luschny, Sep 18 2011

Keywords

Comments

a(n) = r(n+2)/sqrt(2); r(1) = sqrt(2); r(n) = r(n-1)/sqrt(n-1) if r(n-1) is a square else r(n) = r(n-1)*floor(sqrt(n-1).
A variation of Recamán's A008336.

Crossrefs

Cf. A008336.

Programs

  • Maple
    r := proc(n) option remember; if n = 1 then sqrt(2)
    elif type(r(n-1),square) then r(n-1)/sqrt(n-1)
    else r(n-1)*floor(sqrt(n-1)) fi end:
    A195458 := proc(n) r(n+2)/sqrt(2) end:
  • Mathematica
    a[1] = 1;
    a[n_] := a[n] = Floor[Sqrt[n]] a[n - 1]
    Table[a[n], {n, 20}] (* David Callan, Aug 14 2013 *)

Formula

a(n) = Product_{k=1..n} floor(sqrt(k)). - Ridouane Oudra, Feb 16 2023

Extensions

Better name from David Callan, Aug 14 2013