A195458 a(n) = floor(sqrt(n)) * a(n-1), starting with 1.
1, 1, 1, 2, 4, 8, 16, 32, 96, 288, 864, 2592, 7776, 23328, 69984, 279936, 1119744, 4478976, 17915904, 71663616, 286654464, 1146617856, 4586471424, 18345885696, 91729428480, 458647142400, 2293235712000, 11466178560000, 57330892800000, 286654464000000
Offset: 1
Keywords
Crossrefs
Cf. A008336.
Programs
-
Maple
r := proc(n) option remember; if n = 1 then sqrt(2) elif type(r(n-1),square) then r(n-1)/sqrt(n-1) else r(n-1)*floor(sqrt(n-1)) fi end: A195458 := proc(n) r(n+2)/sqrt(2) end:
-
Mathematica
a[1] = 1; a[n_] := a[n] = Floor[Sqrt[n]] a[n - 1] Table[a[n], {n, 20}] (* David Callan, Aug 14 2013 *)
Formula
a(n) = Product_{k=1..n} floor(sqrt(k)). - Ridouane Oudra, Feb 16 2023
Extensions
Better name from David Callan, Aug 14 2013
Comments