A195475 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and angles 30,60,90.
6, 4, 3, 8, 4, 6, 3, 1, 3, 2, 9, 8, 7, 4, 3, 5, 3, 1, 5, 6, 9, 3, 7, 2, 1, 0, 7, 2, 1, 1, 8, 0, 9, 7, 2, 0, 6, 7, 5, 1, 9, 8, 1, 6, 0, 8, 2, 1, 8, 5, 8, 7, 2, 8, 7, 9, 9, 8, 8, 4, 7, 9, 2, 4, 7, 7, 6, 0, 4, 9, 3, 3, 7, 6, 7, 7, 9, 9, 8, 3, 9, 1, 9, 0, 0, 8, 7, 9, 2, 8, 3, 1, 3, 7, 8, 0, 4, 6, 5, 7
Offset: 0
Examples
(A)=0.643846313298743531569372107211809720...
Programs
-
Mathematica
a = 1; b = Sqrt[3]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195575 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195576 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A195577 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195578 *)
Comments