A195499 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201, 33154114877520
Offset: 1
Examples
From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n): 4/3, 15/8, 56/33, 209/120, 780/451.
Programs
-
Mathematica
r = Sqrt[3]; z = 25; p[{f_, n_}] := (#1[[2]]/#1[[ 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ Array[FromContinuedFraction[ ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; {a, b} = ({Denominator[#1], Numerator[#1]} &)[ p[{r, z}]] (* A195499, A195503 *) Sqrt[a^2 + b^2] (* A195531 *) (* by Peter J. C. Moses, Sep 02 2011 *)
Formula
Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - Colin Barker, Jan 04 2012
Comments