cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A195511 E.g.f. satisfies: A(x) = (exp(x) + exp(x*A(x)^2))/2.

Original entry on oeis.org

1, 1, 3, 19, 197, 2801, 50407, 1098371, 28122761, 827684785, 27534518411, 1021777860995, 41847737874637, 1875044409274817, 91239372967844207, 4791502346638758931, 270114113377777911569, 16269795487513345957025, 1042794341136010753491475
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 197*x^4/4! + 2801*x^5/5! +...
Related series begin:
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 37*x^3/3! + 393*x^4/4! + 5601*x^5/5! +...
A(x)^2 = 1 + 2*x + 8*x^2/2! + 56*x^3/3! + 600*x^4/4! + 8712*x^5/5! +...
The g.f. C(x) of A195510 begins:
C(x) = 1 + x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 156*x^5/5! + 1561*x^6/6! +...
where A(x/C(x)) = C(x) = (exp(x*C(x)) + exp(x/C(x)))/2.
		

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),A=1+X);for(i=1,n,A=(exp(X)+exp(X*A^2))/2);n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A(x) = Sum_{n>=0} x^n/n! * (1 + A(x)^(2*n))/2.
E.g.f. satisfies: A(x) = C(x*A(x)) where C(x) = A(x/C(x)) is the g.f. of A195510 and satisfies: C(x) = (exp(x*C(x)) + exp(x/C(x)))/2.
a(n) ~ sqrt(((1+2*r)*s^2-1)/(2+4*r*s^2)) * n^(n-1) / (exp(n) * r^n), where r = 0.258248183317928786953777... and s = 1.7522591181936492232545... are the roots of the equations exp(r) + exp(r*s^2) = 2*s, exp(r*s^2)*r*s = 1. - Vaclav Kotesovec, Jan 11 2014

A198198 E.g.f. satisfies: A(x) = ( exp(x*A(x)) + exp(x*A(-x)) )/2.

Original entry on oeis.org

1, 1, 1, 4, 25, 216, 1561, 19328, 225681, 3790720, 54595921, 1141489152, 20620975849, 519551642624, 11074307974185, 325796967940096, 8068953248603809, 271784019897188352, 7647972455738262817, 290140183695205990400, 9154902981606486123321
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 216*x^5/5! + 1561*x^6/6! +...
Related expansions begin:
exp(x*A(x)) = 1 + x + 3*x^2/2! + 10*x^3/3! + 53*x^4/4! + 376*x^5/5! + 3607*x^6/6! +...+  A199202(n)*x^n/n! +...
exp(x*A(-x)) = 1 + x - x^2/2! - 2*x^3/3! - 3*x^4/4! + 56*x^5/5! - 485*x^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    (* Output from following program is constant d *) 1/r/.FindRoot[{E^(3*s)*r^2 + 2*r*s^2 - 2*E^(2*s)*r*(1+s) + E^s*(r^2*(1-2*s) + 4*s) == 0,(r*s)/(E^s*(E^s*r-2*s)) + Log[-E^s+(2*s)/r] == 0}, {{r, 1/2}, {s, 1}}, WorkingPrecision -> 50] (* Vaclav Kotesovec, Feb 26 2014 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(exp(x*A)+exp(x*subst(A,x,-x+x*O(x^n))))/2);n!*polcoeff(A,n)}

Formula

E.g.f. satisfies: A(x) = Sum_{n>=0} (A(x)^n + A(-x)^n)/2 * x^n/n!.
E.g.f.: A(x) = log(F(x))/x = (F(x) + 1/F(-x))/2 where F(x) is the e.g.f. of A199202.
E.g.f. satisfies: log(-exp(x*y) + 2*y) + (x*y)/(exp(x*y)*(exp(x*y) - 2*y)) = 0, where y = A(x). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ c * n! * d^n / n^(3/2), where d = 1.9126860724609002014... (see Mathematica program), and c = 0.8469455456348576... if n is even, and c = 0.9471934761885996... if n is odd. - Vaclav Kotesovec, Feb 26 2014
Showing 1-2 of 2 results.