cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195556 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/3.

Original entry on oeis.org

1, 12, 24, 35, 468, 900, 1333, 17760, 34188, 50615, 674424, 1298232, 1922041, 25610340, 49298640, 72986939, 972518508, 1872050076, 2771581645, 36930092952, 71088604260, 105247115567, 1402371013680, 2699494911792, 3996618809905
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 1/3; z = 27;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195556, A195557 *)
    Sqrt[a^2 + b^2] (* A195558 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

Formula

Conjecture: a(n) = 37*a(n-3) + 37*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(x^6+12*x^5+24*x^4-2*x^3+24*x^2+12*x+1) / (x^9-37*x^6-37*x^3+1). - Colin Barker, Jun 04 2015