A195561
Hypotenuses of primitive Pythagorean triples in A195559 and A195560.
Original entry on oeis.org
1, 5, 109, 289, 1009, 1189, 6485, 141481, 375121, 1309681, 1543321, 8417525, 183642229, 486906769, 1699964929, 2003229469, 10925940965, 238367471761, 632004611041, 2206553168161, 2600190307441, 14181862955045, 309400794703549
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195560
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2/3.
Original entry on oeis.org
0, 3, 60, 161, 559, 660, 3597, 78480, 208079, 726481, 856080, 4669203, 101866380, 270087281, 942970879, 1111191780, 6060621597, 132222483360, 350573081759, 1223975475361, 1442326073760, 7866682164003, 171624681534300, 455043590036801
Offset: 1
Showing 1-3 of 3 results.
Comments