cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 79 results. Next

A195502 Hypotenuses of primitive Pythagorean triples in A195500 and A195501.

Original entry on oeis.org

5, 397, 533, 9161, 942061, 1223141, 2156041, 88589101, 131991001, 198901779305, 184105084021037, 385524870425705, 6098542411938841, 30913065236666477, 32236231327801693, 184672513372600885, 467376886819742065, 619813168864541257
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for discussion, Mathematica program, and guide to related sequences.

Crossrefs

A195577 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 3/5.

Original entry on oeis.org

1, 4, 56, 299, 1020, 3180, 3901, 20944, 272996, 1465799, 4993800, 15577800, 19105801, 102585004, 1337133056, 7179484499, 24459629220, 76300063380, 93580208101, 502461329944, 6549277433996, 35165113611599, 119803258923600
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 3/5; z = 26;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195577, A195578 *)
    Sqrt[a^2 + b^2] (* A195579 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

Extensions

Typos in crossrefs fixed by Colin Barker, Jun 04 2015

A195575 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2/5.

Original entry on oeis.org

0, 5, 260, 2289, 4991, 7020, 94635, 5103280, 44852079, 97850481, 137599280, 1855038645, 100034487540, 879190467169, 1918065106671, 2697221086300, 36362467421275, 1960876019662560, 17233891492577759, 37597912123131361
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195574 for Mathematica program.

Crossrefs

A195576 Hypotenuses of primitive Pythagorean triples in A195574 and A195575.

Original entry on oeis.org

1, 13, 701, 6161, 13441, 18901, 254813, 13741001, 120767921, 263470481, 370497401, 4994844413, 269351100901, 2367292781281, 5164548355121, 7262490035501, 97908939928813, 5279820266120401, 46403672977902241
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195574 for Mathematica program.

Crossrefs

A195578 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3/5.

Original entry on oeis.org

0, 3, 33, 180, 611, 1909, 2340, 12567, 163797, 879480, 2996279, 9346681, 11463480, 61551003, 802279833, 4307690700, 14675777531, 45780038029, 56148124860, 301476797967, 3929566460397, 21099068166960, 71881955354159, 224230616915761
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195577 for Mathematica program.

Crossrefs

A195499 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).

Original entry on oeis.org

3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201, 33154114877520
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.
Apparently a(n) = A120892(n+1) for 1 <= n <= 24. - Georg Fischer, Oct 24 2018

Examples

			From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):
4/3, 15/8, 56/33, 209/120, 780/451.
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[3]; z = 25;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195499, A195503 *)
    Sqrt[a^2 + b^2] (* A195531 *)
    (* by Peter J. C. Moses, Sep 02 2011 *)

Formula

Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - Colin Barker, Jan 04 2012

A195503 Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).

Original entry on oeis.org

4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195499 for Mathematica program.
Essentially the same as A001353, A106707, A125905 and likely also A010905. - R. J. Mathar, Sep 21 2011
If started 1, 4, 15, 56, ...., denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(1/3). - Clark Kimberling, Sep 22 2011

Crossrefs

Formula

a(n) = A001353(n+1). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(4-x)/(1-4*x+x^2). - Colin Barker, Jan 04 2012

A195564 Hypotenuses of primitive Pythagorean triples in A195561 and A195562.

Original entry on oeis.org

1, 25, 41, 65, 1649, 2705, 4289, 108809, 178489, 283009, 7179745, 11777569, 18674305, 473754361, 777141065, 1232221121, 31260608081, 51279532721, 81307919681, 2062726378985, 3383672018521, 5365090477825, 136108680404929
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195562 for Mathematica program.

Crossrefs

Formula

Empirical g.f.: -x*(x^5+x^4+x^3-41*x^2-25*x-1) / (x^6-66*x^3+1). - Colin Barker, Jun 04 2015

A195616 Denominators of Pythagorean approximations to 3.

Original entry on oeis.org

12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Magma
    I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    r = 3; z = 20;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195616, A195617 *)
    Sqrt[a^2 + b^2] (* A097315 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
    Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End)
From G. C. Greubel, Feb 13 2023: (Start)
a(n) = (3/10)*(A097314(n) + (-1)^n).
a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End)

A195625 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(1/2).

Original entry on oeis.org

1, 4, 756, 435, 7480, 1760400, 178342500, 107770201, 77071637784, 85438755160, 162402622743, 150321171634588, 314779738565193, 1395140327976600, 3899078438579384, 26320772661145332, 506075333191877232, 6916169937061302541
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[1/2]; z = 30;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195625, A195626 *)
    Sqrt[a^2 + b^2] (* A195627 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-10 of 79 results. Next