A195502
Hypotenuses of primitive Pythagorean triples in A195500 and A195501.
Original entry on oeis.org
5, 397, 533, 9161, 942061, 1223141, 2156041, 88589101, 131991001, 198901779305, 184105084021037, 385524870425705, 6098542411938841, 30913065236666477, 32236231327801693, 184672513372600885, 467376886819742065, 619813168864541257
Offset: 1
A195577
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 3/5.
Original entry on oeis.org
1, 4, 56, 299, 1020, 3180, 3901, 20944, 272996, 1465799, 4993800, 15577800, 19105801, 102585004, 1337133056, 7179484499, 24459629220, 76300063380, 93580208101, 502461329944, 6549277433996, 35165113611599, 119803258923600
Offset: 1
-
r = 3/5; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195577, A195578 *)
Sqrt[a^2 + b^2] (* A195579 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195575
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2/5.
Original entry on oeis.org
0, 5, 260, 2289, 4991, 7020, 94635, 5103280, 44852079, 97850481, 137599280, 1855038645, 100034487540, 879190467169, 1918065106671, 2697221086300, 36362467421275, 1960876019662560, 17233891492577759, 37597912123131361
Offset: 1
A195576
Hypotenuses of primitive Pythagorean triples in A195574 and A195575.
Original entry on oeis.org
1, 13, 701, 6161, 13441, 18901, 254813, 13741001, 120767921, 263470481, 370497401, 4994844413, 269351100901, 2367292781281, 5164548355121, 7262490035501, 97908939928813, 5279820266120401, 46403672977902241
Offset: 1
A195578
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3/5.
Original entry on oeis.org
0, 3, 33, 180, 611, 1909, 2340, 12567, 163797, 879480, 2996279, 9346681, 11463480, 61551003, 802279833, 4307690700, 14675777531, 45780038029, 56148124860, 301476797967, 3929566460397, 21099068166960, 71881955354159, 224230616915761
Offset: 1
A195499
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
Original entry on oeis.org
3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201, 33154114877520
Offset: 1
From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):
4/3, 15/8, 56/33, 209/120, 780/451.
-
r = Sqrt[3]; z = 25;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195499, A195503 *)
Sqrt[a^2 + b^2] (* A195531 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
A195503
Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
Original entry on oeis.org
4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841
Offset: 1
A195564
Hypotenuses of primitive Pythagorean triples in A195561 and A195562.
Original entry on oeis.org
1, 25, 41, 65, 1649, 2705, 4289, 108809, 178489, 283009, 7179745, 11777569, 18674305, 473754361, 777141065, 1232221121, 31260608081, 51279532721, 81307919681, 2062726378985, 3383672018521, 5365090477825, 136108680404929
Offset: 1
A195616
Denominators of Pythagorean approximations to 3.
Original entry on oeis.org
12, 444, 16872, 640680, 24328980, 923860548, 35082371856, 1332206269968, 50588755886940, 1921040517433740, 72948950906595192, 2770139093933183544, 105192336618554379492, 3994538652411133237140, 151687276455004508631840
Offset: 1
-
I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
r = 3; z = 20;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195616, A195617 *)
Sqrt[a^2 + b^2] (* A097315 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A195625
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(1/2).
Original entry on oeis.org
1, 4, 756, 435, 7480, 1760400, 178342500, 107770201, 77071637784, 85438755160, 162402622743, 150321171634588, 314779738565193, 1395140327976600, 3899078438579384, 26320772661145332, 506075333191877232, 6916169937061302541
Offset: 1
-
r = Sqrt[1/2]; z = 30;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195625, A195626 *)
Sqrt[a^2 + b^2] (* A195627 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-10 of 79 results.
Comments