A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A097315
Pell equation solutions (3*b(n))^2 - 10*a(n)^2 = -1 with b(n) = A097314(n), n >= 0.
Original entry on oeis.org
1, 37, 1405, 53353, 2026009, 76934989, 2921503573, 110940200785, 4212806126257, 159975692596981, 6074863512559021, 230684837784645817, 8759948972303982025, 332647376109766671133, 12631840343198829521029, 479677285665445755127969, 18215105014943739865341793, 691694313282196669127860165
Offset: 0
(x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1.
G.f. = 1 + 37*x + 1405*x^2 + 53353*x^3 + ... - _Michael Somos_, Feb 24 2023
- Indranil Ghosh, Table of n, a(n) for n = 0..631
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (38,-1).
Cf. similar sequences listed in
A238379.
-
a:=[1,37];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
-
I:=[1, 37]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019
-
CoefficientList[Series[(1-x)/(1-38x+x^2), {x,0,20}], x] (* Michael De Vlieger, Feb 04 2017 *)
LinearRecurrence[{38,-1}, {1,37}, 21] (* G. C. Greubel, Aug 01 2019 *)
-
Vec((1-x)/(1-38*x+x^2) + O(x^20)) \\ Michel Marcus, Jun 04 2015
-
from itertools import islice
def A097315_gen(): # generator of terms
x, y = 30, 10
while True:
yield y//10
x, y = x*19+y*60, x*6+y*19
A097315_list = list(islice(A097315_gen(),20)) # Chai Wah Wu, Apr 24 2025
-
((1-x)/(1-38*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
Typo in recurrence formula corrected by Laurent Bonaventure (bonave(AT)free.fr), Oct 03 2010
A195617
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.
Original entry on oeis.org
35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1
-
I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
-
Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
-
A085447=BinaryRecurrenceSequence(6,1,2,6)
[(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
A195620
Numerators of Pythagorean approximations to 4.
Original entry on oeis.org
63, 4161, 274559, 18116737, 1195430079, 78880268481, 5204902289663, 343444670849281, 22662143373762879, 1495358017997500737, 98670967044461285759, 6510788466916447359361, 429613367849441064432063, 28347971489596193805156801
Offset: 1
-
I:=[63,4161,274559]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
-
LinearRecurrence[{65,65,-1}, {63,4161,274559}, 40] (* G. C. Greubel, Feb 15 2023 *)
-
Vec(x*(63+66*x-x^2)/((1+x)*(1-66*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 03 2015
-
A078989=BinaryRecurrenceSequence(66, -1, 1, 67)
[(16*A078989(n) + (-1)^n)/17 for n in range(1, 41)] # G. C. Greubel, Feb 15 2023
Showing 1-4 of 4 results.
Comments