cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195500 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).

Original entry on oeis.org

3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

For each positive real number r, there is a sequence (a(n),b(n),c(n)) of primitive Pythagorean triples such that the limit of b(n)/a(n) is r and
|r-b(n+1)/a(n+1)| < |r-b(n)/a(n)|. Peter Shiu showed how to find (a(n),b(n)) from the continued fraction for r, and Peter J. C. Moses incorporated Shiu's method in the Mathematica program shown below.
Examples:
r...........a(n)..........b(n)..........c(n)
sqrt(2).....A195500.......A195501.......A195502
sqrt(3).....A195499.......A195503.......A195531
sqrt(5).....A195532.......A195533.......A195534
sqrt(6).....A195535.......A195536.......A195537
sqrt(8).....A195538.......A195539.......A195540
sqrt(12)....A195680.......A195681.......A195682
e...........A195541.......A195542.......A195543
pi..........A195544.......A195545.......A195546
tau.........A195687.......A195688.......A195689
1...........A046727.......A084159.......A001653
2...........A195614.......A195615.......A007805
3...........A195616.......A195617.......A097315
4...........A195619.......A195620.......A078988
5...........A195622.......A195623.......A097727
1/2.........A195547.......A195548.......A195549
3/2.........A195550.......A195551.......A195552
5/2.........A195553.......A195554.......A195555
1/3.........A195556.......A195557.......A195558
2/3.........A195559.......A195560.......A195561
1/4.........A195562.......A195563.......A195564
5/4.........A195565.......A195566.......A195567
7/4.........A195568.......A195569.......A195570
1/5.........A195571.......A195572.......A195573
2/5.........A195574.......A195575.......A195576
3/5.........A195577.......A195578.......A195579
4/5.........A195580.......A195611.......A195612
sqrt(1/2)...A195625.......A195626.......A195627
sqrt(1/3)...{1}+A195503...{0}+A195499...{1}+A195531
sqrt(2/3)...A195631.......A195632.......A195633
sqrt(3/4)...A195634.......A195635.......A195636

Examples

			For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
		

Crossrefs

Programs

  • Maple
    Shiu := proc(r,n)
            t := r+sqrt(1+r^2) ;
            cf := numtheory[cfrac](t,n+1) ;
            mn := numtheory[nthconver](cf,n) ;
            (mn-1/mn)/2 ;
    end proc:
    A195500 := proc(n)
            Shiu(sqrt(2),n) ;
            denom(%) ;
    end proc: # R. J. Mathar, Sep 21 2011
  • Mathematica
    r = Sqrt[2]; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195500, A195501 *)
    Sqrt[a^2 + b^2] (* A195502 *)

A097315 Pell equation solutions (3*b(n))^2 - 10*a(n)^2 = -1 with b(n) = A097314(n), n >= 0.

Original entry on oeis.org

1, 37, 1405, 53353, 2026009, 76934989, 2921503573, 110940200785, 4212806126257, 159975692596981, 6074863512559021, 230684837784645817, 8759948972303982025, 332647376109766671133, 12631840343198829521029, 479677285665445755127969, 18215105014943739865341793, 691694313282196669127860165
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

Hypotenuses of primitive Pythagorean triples in A195616 and A195617. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (3,1), (117,37), (4443,1405), ... give the positive integer solutions to x^2 - 10*y^2 = -1.
G.f. = 1 + 37*x + 1405*x^2 + 53353*x^3 + ... - _Michael Somos_, Feb 24 2023
		

Crossrefs

Row 3 of array A188647.
Cf. A221874.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,37];; for n in [3..20] do a[n]:=38*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
    
  • Magma
    I:=[1, 37]; [n le 2 select I[n] else 38*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-38x+x^2), {x,0,20}], x] (* Michael De Vlieger, Feb 04 2017 *)
    LinearRecurrence[{38,-1}, {1,37}, 21] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    Vec((1-x)/(1-38*x+x^2) + O(x^20)) \\ Michel Marcus, Jun 04 2015
    
  • Python
    from itertools import islice
    def A097315_gen(): # generator of terms
        x, y = 30, 10
        while True:
            yield y//10
            x, y = x*19+y*60, x*6+y*19
    A097315_list = list(islice(A097315_gen(),20)) # Chai Wah Wu, Apr 24 2025
  • Sage
    ((1-x)/(1-38*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = S(n, 38) - S(n-1, 38) = T(2*n+1, sqrt(10))/sqrt(10), with Chebyshev polynomials of the second and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 6*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-38*x+x^2).
a(n) = 38*a(n-1) - a(n-2) for n > 1. - Philippe Deléham, Nov 18 2008
a(n) = sqrt(2+(19-6*sqrt(10))^(1+2*n) + (19+6*sqrt(10))^(1+2*n))/(2*sqrt(10)). - Gerry Martens, Jun 04 2015
a(n) = A078987(n) - A078987(n-1). - R. J. Mathar, Dec 05 2015
a(n) = A005668(2*n+1). - Michael Somos, Feb 24 2023
E.g.f.: exp(19*x)*(10*cosh(6*sqrt(10)*x) + 3*sqrt(10)*sinh(6*sqrt(10)*x))/10. - Stefano Spezia, Apr 24 2025

Extensions

Typo in recurrence formula corrected by Laurent Bonaventure (bonave(AT)free.fr), Oct 03 2010
More terms added by Indranil Ghosh, Feb 04 2017

A195617 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.

Original entry on oeis.org

35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195616 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
    
  • Mathematica
    Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
    
  • SageMath
    A085447=BinaryRecurrenceSequence(6,1,2,6)
    [(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023

Formula

From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: x*(35+38*x-x^2) / ((1+x)*(1-38*x+x^2)). (End)
a(n) = (1/20)*(3*A085447(2*n+1) + 2*(-1)^n). - G. C. Greubel, Feb 13 2023

A195620 Numerators of Pythagorean approximations to 4.

Original entry on oeis.org

63, 4161, 274559, 18116737, 1195430079, 78880268481, 5204902289663, 343444670849281, 22662143373762879, 1495358017997500737, 98670967044461285759, 6510788466916447359361, 429613367849441064432063, 28347971489596193805156801
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195616 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[63,4161,274559]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
    
  • Mathematica
    LinearRecurrence[{65,65,-1}, {63,4161,274559}, 40] (* G. C. Greubel, Feb 15 2023 *)
  • PARI
    Vec(x*(63+66*x-x^2)/((1+x)*(1-66*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 03 2015
    
  • SageMath
    A078989=BinaryRecurrenceSequence(66, -1, 1, 67)
    [(16*A078989(n) + (-1)^n)/17 for n in range(1, 41)] # G. C. Greubel, Feb 15 2023

Formula

From Colin Barker, Jun 03 2015: (Start)
a(n) = 65*a(n-1) + 65*a(n-2) - a(n-3).
G.f.: x*(63+66*x-x^2) / ((1+x)*(1-66*x+x^2)). (End)
a(n) = ((-1)^n - 2*(-4+sqrt(17))*(33+8*sqrt(17))^(-n) + 2*(4+sqrt(17))*(33+8*sqrt(17))^n)/17. - Colin Barker, Mar 03 2016
a(n) = (1/17)*(A078989(n) + (-1)^n) - [n=0]. - G. C. Greubel, Feb 15 2023
Showing 1-4 of 4 results.