A195531
Hypotenuses of Pythagorean triples in A195499 and A195503.
Original entry on oeis.org
5, 17, 65, 241, 901, 3361, 12545, 46817, 174725, 652081, 2433601, 9082321, 33895685, 126500417, 472105985, 1761923521, 6575588101, 24540428881, 91586127425, 341804080817, 1275630195845, 4760716702561, 17767236614401, 66308229755041
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195499
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3).
Original entry on oeis.org
3, 8, 33, 120, 451, 1680, 6273, 23408, 87363, 326040, 1216801, 4541160, 16947843, 63250208, 236052993, 880961760, 3287794051, 12270214440, 45793063713, 170902040408, 637815097923, 2380358351280, 8883618307201, 33154114877520
Offset: 1
From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n):
4/3, 15/8, 56/33, 209/120, 780/451.
-
r = Sqrt[3]; z = 25;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195499, A195503 *)
Sqrt[a^2 + b^2] (* A195531 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
A195501
Numerators b(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
4, 325, 435, 7480, 769189, 998691, 1760400, 72332699, 107770201, 162402622743, 150321171634588, 314779738565193, 4979439027990791, 25240412071733925, 26320772661145332, 150784475760058387, 381611630092964177, 506075333191877232
Offset: 1
A010905
Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15.
Original entry on oeis.org
4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244
Offset: 0
- Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (4,-1).
-
/* By definition: */ [n le 2 select 11*n-7 else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..22]]; // Bruno Berselli, Apr 16 2012
-
a[0] = 4; a[1] = 15; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 24}] (* Michael De Vlieger, Jul 27 2016 *)
-
pisotE(nmax, a1, a2) = {
a=vector(nmax); a[1]=a1; a[2]=a2;
for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
a
}
pisotE(50, 4, 15) \\ Colin Barker, Jul 27 2016
-
@cached_function
def A010905(n):
if n==0: return 4
elif n==1: return 15
else: return 4*A010905(n-1) - A010905(n-2)
[A010905(n) for n in range(30)] # G. C. Greubel, Dec 13 2018
Showing 1-5 of 5 results.
Comments