cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A195500 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).

Original entry on oeis.org

3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

For each positive real number r, there is a sequence (a(n),b(n),c(n)) of primitive Pythagorean triples such that the limit of b(n)/a(n) is r and
|r-b(n+1)/a(n+1)| < |r-b(n)/a(n)|. Peter Shiu showed how to find (a(n),b(n)) from the continued fraction for r, and Peter J. C. Moses incorporated Shiu's method in the Mathematica program shown below.
Examples:
r...........a(n)..........b(n)..........c(n)
sqrt(2).....A195500.......A195501.......A195502
sqrt(3).....A195499.......A195503.......A195531
sqrt(5).....A195532.......A195533.......A195534
sqrt(6).....A195535.......A195536.......A195537
sqrt(8).....A195538.......A195539.......A195540
sqrt(12)....A195680.......A195681.......A195682
e...........A195541.......A195542.......A195543
pi..........A195544.......A195545.......A195546
tau.........A195687.......A195688.......A195689
1...........A046727.......A084159.......A001653
2...........A195614.......A195615.......A007805
3...........A195616.......A195617.......A097315
4...........A195619.......A195620.......A078988
5...........A195622.......A195623.......A097727
1/2.........A195547.......A195548.......A195549
3/2.........A195550.......A195551.......A195552
5/2.........A195553.......A195554.......A195555
1/3.........A195556.......A195557.......A195558
2/3.........A195559.......A195560.......A195561
1/4.........A195562.......A195563.......A195564
5/4.........A195565.......A195566.......A195567
7/4.........A195568.......A195569.......A195570
1/5.........A195571.......A195572.......A195573
2/5.........A195574.......A195575.......A195576
3/5.........A195577.......A195578.......A195579
4/5.........A195580.......A195611.......A195612
sqrt(1/2)...A195625.......A195626.......A195627
sqrt(1/3)...{1}+A195503...{0}+A195499...{1}+A195531
sqrt(2/3)...A195631.......A195632.......A195633
sqrt(3/4)...A195634.......A195635.......A195636

Examples

			For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
		

Crossrefs

Programs

  • Maple
    Shiu := proc(r,n)
            t := r+sqrt(1+r^2) ;
            cf := numtheory[cfrac](t,n+1) ;
            mn := numtheory[nthconver](cf,n) ;
            (mn-1/mn)/2 ;
    end proc:
    A195500 := proc(n)
            Shiu(sqrt(2),n) ;
            denom(%) ;
    end proc: # R. J. Mathar, Sep 21 2011
  • Mathematica
    r = Sqrt[2]; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195500, A195501 *)
    Sqrt[a^2 + b^2] (* A195502 *)

A055641 Number of zero digits in n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Examples

			a(99) = 0 because the digits of 99 are 9 and 9, a(100) = 2 because the digits of 100 are 1, 0 and 0 and there are two 0's.
		

Crossrefs

Programs

  • Haskell
    a055641 n | n < 10    = 0 ^ n
              | otherwise = a055641 n' + 0 ^ d where (n',d) = divMod n 10
    -- Reinhard Zumkeller, Apr 30 2013
    
  • Mathematica
    Array[Last@ DigitCount@ # &, 105] (* Michael De Vlieger, Jul 02 2015 *)
  • PARI
    a(n)=if(n,n=digits(n); sum(i=2,#n,n[i]==0), 1) \\ Charles R Greathouse IV, Sep 13 2015
    
  • PARI
    A055641(n)=#select(d->!d,digits(n))+!n \\ M. F. Hasler, Jun 22 2018
    
  • Python
    def a(n): return str(n).count("0")
    print([a(n) for n in range(106)]) # Michael S. Branicky, May 26 2022

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = m + 1 - A055640(n) = Sum_{j=1..m+1} (1 + floor(n/10^j) - floor(n/10^j+0.9)), where m = floor(log_10(n)).
G.f.: g(x) = 1 + (1/(1-x))*Sum_{j>=0} (x^(10*10^j) - x^(11*10^j))/(1-x^10^(j+1)). (End)
a(n) = if n<10 then A000007(n) else a(A059995(n)) + A000007(A010879(n)). - Reinhard Zumkeller, Apr 30 2013, corrected by M. F. Hasler, Jun 22 2018

A055640 Number of nonzero digits in decimal expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

Comment from Antti Karttunen, Sep 05 2004: (Start)
Also number of characters needed to write the number n in classical Greek alphabetic system, up to n=999. The Greek alphabetic system assigned values to the letters as follows:
alpha = 1, beta = 2, gamma = 3, delta = 4, epsilon = 5, digamma = 6, zeta = 7, eta = 8, theta = 9, iota = 10, kappa = 20, lambda = 30, mu = 40, nu = 50, xi = 60, omicron = 70, pi = 80, koppa = 90, rho = 100, sigma = 200, tau = 300, upsilon = 400, phi = 500, chi = 600, psi = 700, omega = 800, sampi = 900. (End)
For partial sums see A102685. - Hieronymus Fischer, Jun 06 2012

Examples

			129 is written as rho kappa theta in the old Greek system.
		

References

  • L. Threatte, The Greek Alphabet, in The World's Writing Systems, edited by Peter T. Daniels and William Bright, Oxford Univ. Press, 1996, p. 278.

Crossrefs

Differs from A098378 for the first time at position n=200 with a(200)=1, as only one nonzero Arabic digit (and only one Greek letter) is needed for two hundred, while A098378(200)=2 as two characters are needed in the Ethiopic system.

Programs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j+0.9) - floor(n/10^j)), where m = floor(log_10(n)).
a(n) = m + 1 - A055641(n).
G.f.: (1/(1-x))*Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(n) = A055642(n) - A055641(n).

A195562 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4.

Original entry on oeis.org

1, 24, 40, 63, 1600, 2624, 4161, 105560, 173160, 274559, 6965376, 11425920, 18116737, 459609240, 753937576, 1195430079, 30327244480, 49748454080, 78880268481, 2001138526424, 3282644031720, 5204902289663, 132044815499520
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    Remove["Global`*"];
    r = 1/4; z = 26;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195562, A195563 *)
    Sqrt[a^2 + b^2] (* A195564 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

Formula

Conjecture: a(n) = 65*a(n-3) + 65*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(x^6+24*x^5+40*x^4-2*x^3+40*x^2+24*x+1) / (x^9-65*x^6-65*x^3+1). - Colin Barker, Jun 04 2015

A195563 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 1/4.

Original entry on oeis.org

0, 7, 9, 16, 399, 657, 1040, 26391, 43289, 68640, 1741343, 2856481, 4529184, 114902311, 188484393, 298857520, 7581811119, 12437113521, 19720067120, 500284631607, 820661007929, 1301225572416, 33011203874879, 54151189409857
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195562 for Mathematica program.

Crossrefs

Formula

Empirical g.f.: -x^2*(x^7-x^6-72*x^4+56*x^3-16*x^2-9*x-7) / (x^9-65*x^6-65*x^3+1). - Colin Barker, Jun 04 2015
Showing 1-5 of 5 results.