A195564
Hypotenuses of primitive Pythagorean triples in A195561 and A195562.
Original entry on oeis.org
1, 25, 41, 65, 1649, 2705, 4289, 108809, 178489, 283009, 7179745, 11777569, 18674305, 473754361, 777141065, 1232221121, 31260608081, 51279532721, 81307919681, 2062726378985, 3383672018521, 5365090477825, 136108680404929
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195563
Numerators b(n) of Pythagorean approximations b(n)/a(n) to 1/4.
Original entry on oeis.org
0, 7, 9, 16, 399, 657, 1040, 26391, 43289, 68640, 1741343, 2856481, 4529184, 114902311, 188484393, 298857520, 7581811119, 12437113521, 19720067120, 500284631607, 820661007929, 1301225572416, 33011203874879, 54151189409857
Offset: 1
Showing 1-3 of 3 results.
Comments