A259497 a(n) = number of steps before A055641(num(i)) = 0, when num(i) = num(i-1) + A055641(num(i-1)) and num(0) = 10^n, where A055641(n) is the number of zero digits in n.
1, 10, 96, 918, 8778, 83970, 803652, 7695702, 73736351, 706940003, 6782083197, 65107856455, 625462980243, 6012764576492, 57843691102715, 556865542063090, 5364870125881211, 51722954280818076, 499024949301954326, 4818086348226292202, 46551954003050282966
Offset: 1
Examples
For example, when num(0) = 10^1 = 10, A055641(10) = 1. 10 + 1 = 11 and A055641(11) = 0. Therefore a(1) = 1, because the procedure has taken one step before A055641(num(i)) = 0. a(2) begins with num(0) = 10^2 = 100. 1: 100 + A055641(100) = 100 + 2 = 102. 2: 102 + A055641(102) = 102 + 1 = 103. . . 9: 109 + A055641(109) = 109 + 1 = 110. 10: 110 + A055641(110) = 110 + 1 = 111. At the next step, A055641(111) = 0, so the procedure takes ten steps before A055641(num(i)) = 0 and a(2) = 10.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A055641.
Programs
-
PARI
{ b=10; digmx=10; for(ni=2,digmx, n=b^(ni-1); s=0; until(z==0, d=digits(n,b); z=sum(i=2,ni,if(d[i]==0,1,0)); n+=z; s++; ); print1(s-1,", "); ); }
Extensions
a(12)-a(21) from Hiroaki Yamanouchi, Aug 02 2015
Comments