A195567
Hypotenuses of primitive Pythagorean triples in A195565 and A195566.
Original entry on oeis.org
5, 5, 325, 449, 3649, 20165, 20485, 1331845, 1840001, 14953601, 82636165, 83947525, 5457900485, 7540323649, 61279853249, 338642984005, 344016936965, 22366474855685, 30900244473601, 251124823660801, 1387758865816325, 1409781323735045
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195565
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 5/4.
Original entry on oeis.org
4, 3, 204, 280, 2280, 12596, 12797, 831996, 1149440, 9341440, 51622404, 52441603, 3409523404, 4710402840, 38281220840, 211548594996, 214905676797, 13972226073596, 19303229690880, 156876433658880, 866926090675204, 880683411072003
Offset: 1
-
r = 5/4; z = 26;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195565, A195566 *)
Sqrt[a^2 + b^2] (* A195567 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
Showing 1-3 of 3 results.
Comments