cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195582 Numerator of the average height of a binary search tree on n elements.

Original entry on oeis.org

0, 1, 2, 8, 10, 19, 64, 1471, 3161, 3028, 6397, 27956, 58307, 168652, 190031, 794076401, 817191437, 57056556523, 65776878541, 112508501827291, 32836043478431, 24620974441660973, 30663050241335933, 280904716386831931, 1713934856212591039, 12438570098319186469
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2011

Keywords

Comments

Empty external nodes are counted in determining the height of a search tree.

Examples

			0/1, 1/1, 2/1, 8/3, 10/3, 19/5, 64/15, 1471/315, 3161/630, 3028/567, 6397/1134, 27956/4725, 58307/9450, 168652/26325, 190031/28665 ... = A195582/A195583
For n = 3 there are 2 permutations of {1,2,3} resulting in a binary search tree of height 2 and 4 permutations resulting in a tree of height 3.  The average height is (2*2+4*3)/3! = (4+12)/6 = 16/6 = 8/3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n,k) option remember;
          if n=0 then 1
        elif n=1 then `if`(k>0, 1, 0)
        else add(binomial(n-1,r-1) *b(r-1,k-1) *b(n-r,k-1), r=1..n)
          fi
        end:
    T:= (n, k)-> b(n, k)-`if`(k>0, b(n, k-1), 0):
    a:= n-> add(T(n,k)*k, k=0..n)/n!:
    seq(numer(a(n)), n=0..30);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n==0, 1, If[n==1, If[k>0, 1, 0], Sum[Binomial[n - 1, r-1]*b[r-1, k-1]*b[n-r, k-1], {r, 1, n}]]]; T[n_, k_] := b[n, k] - If[ k>0, b[n, k-1], 0]; a[n_] := Sum[T[n, k]*k, {k, 0, n}]/n!; Table[ Numerator[a[n]], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)

Formula

A195582(n)/A195583(n) = 1/n! * Sum_{k=1..n} k * A195581(n,k).
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1), with alpha = 4.311... (A195596) and beta = 1.953... (A195599).
A195582(n)/A195583(n) = A316944(n) / A000142(n).