A195598 Engel expansion of alpha, the unique solution on [2,oo) of the equation alpha*log((2*e)/alpha)=1.
1, 1, 1, 1, 4, 5, 5, 10, 15, 18, 102, 114, 246, 394, 1051, 3044, 50263, 111686, 128162, 273256, 583069, 927699, 7299350, 10833746, 15187876, 67314562, 2141820499, 4969978969, 10131201410, 49316153957, 221808008142, 275241196373, 1466049587038, 3406190692970
Offset: 1
Keywords
References
- F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191.
Links
- F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
- P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
- B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332.
- Eric Weisstein's World of Mathematics, Engel Expansion
- Wikipedia, Engel Expansion
- Index entries for sequences related to Engel expansions
Crossrefs
Programs
-
Maple
alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]): Digits:=400: engel(evalf(alpha), 39);
Comments