cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195599 Decimal expansion of beta = 3/(2*log(alpha/2)), where alpha = A195596.

Original entry on oeis.org

1, 9, 5, 3, 0, 2, 5, 7, 0, 3, 3, 5, 8, 1, 5, 4, 1, 3, 9, 4, 5, 4, 0, 6, 2, 8, 8, 5, 4, 2, 5, 7, 5, 3, 8, 0, 4, 1, 4, 2, 5, 1, 3, 4, 0, 2, 0, 1, 0, 3, 6, 3, 1, 9, 6, 0, 9, 3, 5, 4, 2, 8, 8, 1, 8, 0, 6, 9, 6, 0, 7, 9, 7, 2, 3, 3, 6, 2, 5, 2, 5, 6, 9, 7, 5, 2, 1, 8, 9, 2, 9, 5, 3, 3, 5, 3, 1, 5, 1, 9, 7, 3, 2, 3, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2011

Keywords

Comments

beta is used to measure the expected height of random binary search trees.

Examples

			1.95302570335815413945406288542575380414251340201036319609354...
		

Crossrefs

Cf. A195600 (continued fraction), A195601 (Engel expansion), A195581, A195582, A195583, A195596, A195597, A195598.

Programs

  • Maple
    alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha):
    beta:= 3/(2*log(alpha/2)):
    bs:= convert(evalf(beta/10, 130), string):
    seq(parse(bs[n+1]), n=1..120);
  • Mathematica
    RealDigits[ 3/(2 + 2*ProductLog[-1/(2*E)]) , 10, 105] // First (* Jean-François Alcover, Feb 19 2013 *)

Formula

beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function.
A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1).