A195617 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 3.
35, 1333, 50615, 1922041, 72986939, 2771581645, 105247115567, 3996618809905, 151766267660819, 5763121552301221, 218846852719785575, 8310417281799550633, 315577009855663138475, 11983615957233399711421, 455061829365013525895519
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..632
- Index entries for linear recurrences with constant coefficients, signature (37,37,-1).
Programs
-
Magma
I:=[35, 1333, 50615]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 13 2023
-
Mathematica
Table[(3*LucasL[2*n+1,6] +2*(-1)^n)/20, {n, 40}] (* G. C. Greubel, Feb 13 2023 *)
-
PARI
Vec(-x*(x^2-38*x-35)/((x+1)*(x^2-38*x+1)) + O(x^50)) \\ Colin Barker, Jun 04 2015
-
SageMath
A085447=BinaryRecurrenceSequence(6,1,2,6) [(3*A085447(2*n+1) + 2*(-1)^n)/20 for n in range(1,41)] # G. C. Greubel, Feb 13 2023
Formula
From Colin Barker, Jun 04 2015: (Start)
a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3).
G.f.: x*(35+38*x-x^2) / ((1+x)*(1-38*x+x^2)). (End)
a(n) = (1/20)*(3*A085447(2*n+1) + 2*(-1)^n). - G. C. Greubel, Feb 13 2023
Comments