cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195620 Numerators of Pythagorean approximations to 4.

Original entry on oeis.org

63, 4161, 274559, 18116737, 1195430079, 78880268481, 5204902289663, 343444670849281, 22662143373762879, 1495358017997500737, 98670967044461285759, 6510788466916447359361, 429613367849441064432063, 28347971489596193805156801
Offset: 1

Views

Author

Clark Kimberling, Sep 22 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195616 for Mathematica program.

Crossrefs

Programs

  • Magma
    I:=[63,4161,274559]; [n le 3 select I[n] else 65*Self(n-1) +65*Self(n-2) -Self(n-3): n in [1..40]]; // G. C. Greubel, Feb 15 2023
    
  • Mathematica
    LinearRecurrence[{65,65,-1}, {63,4161,274559}, 40] (* G. C. Greubel, Feb 15 2023 *)
  • PARI
    Vec(x*(63+66*x-x^2)/((1+x)*(1-66*x+x^2)) + O(x^20)) \\ Colin Barker, Jun 03 2015
    
  • SageMath
    A078989=BinaryRecurrenceSequence(66, -1, 1, 67)
    [(16*A078989(n) + (-1)^n)/17 for n in range(1, 41)] # G. C. Greubel, Feb 15 2023

Formula

From Colin Barker, Jun 03 2015: (Start)
a(n) = 65*a(n-1) + 65*a(n-2) - a(n-3).
G.f.: x*(63+66*x-x^2) / ((1+x)*(1-66*x+x^2)). (End)
a(n) = ((-1)^n - 2*(-4+sqrt(17))*(33+8*sqrt(17))^(-n) + 2*(4+sqrt(17))*(33+8*sqrt(17))^n)/17. - Colin Barker, Mar 03 2016
a(n) = (1/17)*(A078989(n) + (-1)^n) - [n=0]. - G. C. Greubel, Feb 15 2023