cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195644 T(n,k) is the number of lower triangles of an n X n 0..k array with all row sums equal to the length of the row and all column sums equal to the length of the column.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 15, 1, 1, 1, 3, 19, 199, 1, 1, 1, 3, 19, 379, 6247, 1, 1, 1, 3, 19, 391, 22506, 505623, 1, 1, 1, 3, 19, 391, 25428, 4063437, 105997283, 1, 1, 1, 3, 19, 391, 25532, 5422820, 2303397986, 58923059879, 1, 1, 1, 3, 19, 391, 25532, 5536654
Offset: 1

Views

Author

R. H. Hardin, Sep 21 2011

Keywords

Examples

			Table starts:
  1         1          1          1          1          1 ...
  1         1          1          1          1          1 ...
  1         3          3          3          3          3 ...
  1        15         19         19         19         19 ...
  1       199        379        391        391        391 ...
  1      6247      22506      25428      25532      25532 ...
  1    505623    4063437    5422820    5536654    5539434 ...
  1 105997283 2303397986 3868544673 4102276124 4116036800 ...
  ...
Some solutions for n=5, k=4:
..1..........1..........1..........1..........1..........1..........1
..1.1........1.1........2.0........2.0........2.0........2.0........2.0
..3.0.0......3.0.0......0.1.2......2.1.0......0.1.2......2.0.1......1.2.0
..0.1.1.2....0.1.1.2....1.1.0.2....0.1.1.2....1.1.0.2....0.0.2.2....1.2.1.0
..0.2.2.0.1..0.2.2.0.1..1.2.1.0.1..0.2.2.0.1..1.2.1.0.1..0.4.0.0.1..0.0.2.2.1
		

Crossrefs

Main diagonal is A195638.

Programs

  • PARI
    \\ adapted from program for A257493.
    T(n, k)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, min(k, h-i), for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1] + x^(r-1), 0, src[i, 2], r))); vecsum(Mat(M)[, 2])
    } \\ Andrew Howroyd, May 16 2020

Formula

T(n,k) = T(n,k-1) for k >= n, n >= 2. - Andrew Howroyd, May 16 2020