A195682
Hypotenuses of primitive Pythagorean triples in A195680 and A195681.
Original entry on oeis.org
25, 9997, 21433, 94265, 1029821, 926902721, 8606342785, 374439945601, 918049206661, 11035479109045, 107207314895753, 226564822394569, 322736658181277, 1636868962618493, 5652252040004741, 129187165603885181, 82664039951186181157
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195680
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(12).
Original entry on oeis.org
7, 2772, 5945, 26144, 285621, 257076560, 2386970016, 103850955649, 254621037540, 3060691213613, 29733959304728, 62837775720000, 89511043811115, 453985767379732, 1567652657852541, 35830073055128140, 22926879590846577132
Offset: 1
-
r = Sqrt[12]; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195680, A195681 *)
Sqrt[a^2 + b^2] (* A195682 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195687
Denominators a(n) of Pythagorean approximations b(n)/a(n) to (1+sqrt(5))/2 (the golden ratio).
Original entry on oeis.org
3, 8, 28, 1863, 4400, 433008, 262353, 352207108, 379920428, 18418959496, 91011249895, 978117768540, 11516765628956, 1219780690817560, 708294344602810604, 25852535312829023356, 229222230912132985022679
Offset: 1
-
r = GoldenRatio; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[p[{r, z}]] (* A195687, A195688 *)
Sqrt[a^2 + b^2] (* A195689 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-4 of 4 results.
Comments