A195689
Hypotenuses of primitive Pythagorean triples in A195687 and A195688.
Original entry on oeis.org
5, 17, 53, 3545, 8369, 823633, 499025, 669937733, 722651597, 35034942905, 173113684537, 1860490554949, 21906189996125, 2320160748906089, 1347255903779016125, 49174444344033218405, 436006592777392918253129, 31471103940926430492910889
Offset: 1
A195500
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).
Original entry on oeis.org
3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1
For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
-
Shiu := proc(r,n)
t := r+sqrt(1+r^2) ;
cf := numtheory[cfrac](t,n+1) ;
mn := numtheory[nthconver](cf,n) ;
(mn-1/mn)/2 ;
end proc:
A195500 := proc(n)
Shiu(sqrt(2),n) ;
denom(%) ;
end proc: # R. J. Mathar, Sep 21 2011
-
r = Sqrt[2]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195500, A195501 *)
Sqrt[a^2 + b^2] (* A195502 *)
A195687
Denominators a(n) of Pythagorean approximations b(n)/a(n) to (1+sqrt(5))/2 (the golden ratio).
Original entry on oeis.org
3, 8, 28, 1863, 4400, 433008, 262353, 352207108, 379920428, 18418959496, 91011249895, 978117768540, 11516765628956, 1219780690817560, 708294344602810604, 25852535312829023356, 229222230912132985022679
Offset: 1
-
r = GoldenRatio; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[p[{r, z}]] (* A195687, A195688 *)
Sqrt[a^2 + b^2] (* A195689 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Showing 1-3 of 3 results.
Comments