A195690 Numbers such that the difference between the sum of the even divisors and the sum of the odd divisors is a perfect square.
2, 6, 72, 76, 162, 228, 230, 238, 316, 434, 530, 580, 686, 690, 714, 716, 756, 770, 948, 994, 1034, 1054, 1216, 1302, 1358, 1490, 1590, 1740, 1778, 1836, 1870, 1996, 2058, 2148, 2310, 2354, 2414, 2438, 2492, 2596, 2668, 2786, 2876, 2930, 2982, 3002, 3102
Offset: 1
Keywords
Examples
The divisors of 76 are { 1, 2, 4, 19, 38, 76}, and (2 + 4 + 38 + 76 ) - (1 + 19 ) = 10^2. Hence 76 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 2 by 2 to 200 do:x:=divisors(n):n1:=nops(x):s1:=0:s2:=0:for m from 1 to n1 do:if irem(x[m],2)=1 then s1:=s1+x[m]:else s2:=s2+x[m]:fi:od: z:=sqrt(s2-s1):if z=floor(z) then printf(`%d, `,n): else fi:od:
-
Mathematica
f[p_, e_] := If[p == 2, 3 - 2^(e + 1) , (p^(e + 1) - 1)/(p - 1)]; aQ[n_] := IntegerQ[Sqrt[-Times @@ (f @@@ FactorInteger[n])]]; Select[Range[2, 3200], aQ] (* Amiram Eldar, Jul 20 2019 *)
Comments