cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195734 G.f.: exp( Sum_{n>=1} (2*sigma(n^2) - sigma(n)^2) * x^n/n ).

Original entry on oeis.org

1, 1, 3, 6, 11, 22, 40, 72, 123, 215, 363, 605, 991, 1618, 2598, 4139, 6537, 10229, 15871, 24476, 37487, 56995, 86177, 129531, 193662, 287992, 426254, 627841, 920708, 1344331, 1954987, 2831688, 4086168, 5875087, 8417724, 12020250, 17108958, 24275947, 34340966
Offset: 0

Views

Author

Paul D. Hanna, Sep 22 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 22*x^5 + 40*x^6 + 72*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 10*x^3/3 + 13*x^4/4 + 26*x^5/5 + 38*x^6/6 + 50*x^7/7 + 29*x^8/8 +...+ A195735(n)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Exp[Sum[(2*DivisorSigma[1,k^2] - DivisorSigma[1,k]^2) * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2024 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1, n,(2*sigma(k^2)-sigma(k)^2)*x^k/k)+x*O(x^n)), n)}

Formula

Logarithmic derivative equals A195735.
log(a(n)) ~ 3*(5*zeta(3)*(12 - Pi^2))^(1/3) * n^(2/3) / (2*Pi^(2/3)). - Vaclav Kotesovec, Oct 31 2024