A195760 G.f.: A(x) = exp( Sum_{n>=1} 5*5^A112765(n) * x^n/n ), where A112765 is the exponent of the highest power of 5 dividing n.
1, 5, 15, 35, 70, 130, 230, 390, 635, 995, 1515, 2255, 3290, 4710, 6620, 9160, 12505, 16865, 22485, 29645, 38695, 50055, 64215, 81735, 103245, 129505, 161405, 199965, 246335, 301795, 367855, 446255, 538965, 648185, 776345, 926265, 1101155, 1304615, 1540635
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 130*x^5 + 230*x^6 +... log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 25*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 25*x^10/10 +... The coefficients in the QUINTISECTIONS of g.f. A(x) begin: Q0: [1, 130, 1515, 9160, 38695, 129505, 367855, 926265, 2128510, ...]; Q1: [5, 230, 2255, 12505, 50055, 161405, 446255, 1101155, 2491030, ...]; Q2: [15, 390, 3290, 16865, 64215, 199965, 538965, 1304615, 2907440, ...]; Q3: [35, 635, 4710, 22485, 81735, 246335, 648185, 1540635, 3384660, ...]; Q4: [70, 995, 6620, 29645, 103245, 301795, 776345, 1813595, 3930245, ...]. The coefficients in the products Q2*Q3 and Q1*Q4 begin: Q2(x)*Q3(x): [525, 23175, 433450, 4853600, 38447875, 236756775, ...]; Q1(x)*Q4(x): [350, 21075, 419800, 4789900, 38209000, 235990975, ...]; where Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2, and R(x) = 1 - 9*x + 36*x^2 - 84*x^3 + 126*x^4 - 130*x^5 + 120*x^6 +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
PARI
{a(n)=local(N=ceil(log(n+6)/log(5)));polcoeff(1/(1-x+x*O(x^n))^5/prod(k=1,N,(1-x^(5^k) +x*O(x^n))^4),n)}
-
PARI
{a(n)=local(L=sum(m=1, n, 5*5^valuation(m, 5)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
Formula
G.f.: A(x) = 1/(1-x)^5 * Product_{n>=1} 1/(1 - x^(5^n))^4.
G.f. satisfies: A(x) = A(x^5)*(1-x^5)/(1-x)^5.
Let the QUINTISECTIONS of g.f. A(x) be defined by:
A(x) = Q0(x^5) + x*Q1(x^5) + x^2*Q3(x^5) + x^3*Q3(x^5) + x^4*Q4(x^5),
then:
_ Q0(x) = (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/R(x)
_ Q1(x) = 5*(1 + 37*x + 73*x^2 + 14*x^3)/R(x)
_ Q2(x) = 5*(3 + 51*x + 64*x^2 + 7*x^3)/R(x)
_ Q3(x) = 5*(7 + 64*x + 51*x^2 + 3*x^3)/R(x)
_ Q4(x) = 5*(14 + 73*x + 37*x^2 + 1*x^3)/R(x)
where R(x) = (1-x)^5 * Product_{n>=0} (1 - x^(5^n))^4.
Further, the quintisections are related by:
_ Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2.