cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195760 G.f.: A(x) = exp( Sum_{n>=1} 5*5^A112765(n) * x^n/n ), where A112765 is the exponent of the highest power of 5 dividing n.

Original entry on oeis.org

1, 5, 15, 35, 70, 130, 230, 390, 635, 995, 1515, 2255, 3290, 4710, 6620, 9160, 12505, 16865, 22485, 29645, 38695, 50055, 64215, 81735, 103245, 129505, 161405, 199965, 246335, 301795, 367855, 446255, 538965, 648185, 776345, 926265, 1101155, 1304615, 1540635
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2011

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 130*x^5 + 230*x^6 +...
log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 25*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 25*x^10/10 +...
The coefficients in the QUINTISECTIONS of g.f. A(x) begin:
Q0: [1, 130, 1515, 9160, 38695, 129505, 367855, 926265, 2128510, ...];
Q1: [5, 230, 2255, 12505, 50055, 161405, 446255, 1101155, 2491030, ...];
Q2: [15, 390, 3290, 16865, 64215, 199965, 538965, 1304615, 2907440, ...];
Q3: [35, 635, 4710, 22485, 81735, 246335, 648185, 1540635, 3384660, ...];
Q4: [70, 995, 6620, 29645, 103245, 301795, 776345, 1813595, 3930245, ...].
The coefficients in the products Q2*Q3 and Q1*Q4 begin:
Q2(x)*Q3(x): [525, 23175, 433450, 4853600, 38447875, 236756775, ...];
Q1(x)*Q4(x): [350, 21075, 419800, 4789900, 38209000, 235990975, ...];
where Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2, and
R(x) = 1 - 9*x + 36*x^2 - 84*x^3 + 126*x^4 - 130*x^5 + 120*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(N=ceil(log(n+6)/log(5)));polcoeff(1/(1-x+x*O(x^n))^5/prod(k=1,N,(1-x^(5^k) +x*O(x^n))^4),n)}
    
  • PARI
    {a(n)=local(L=sum(m=1, n, 5*5^valuation(m, 5)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}

Formula

G.f.: A(x) = 1/(1-x)^5 * Product_{n>=1} 1/(1 - x^(5^n))^4.
G.f. satisfies: A(x) = A(x^5)*(1-x^5)/(1-x)^5.
Let the QUINTISECTIONS of g.f. A(x) be defined by:
A(x) = Q0(x^5) + x*Q1(x^5) + x^2*Q3(x^5) + x^3*Q3(x^5) + x^4*Q4(x^5),
then:
_ Q0(x) = (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/R(x)
_ Q1(x) = 5*(1 + 37*x + 73*x^2 + 14*x^3)/R(x)
_ Q2(x) = 5*(3 + 51*x + 64*x^2 + 7*x^3)/R(x)
_ Q3(x) = 5*(7 + 64*x + 51*x^2 + 3*x^3)/R(x)
_ Q4(x) = 5*(14 + 73*x + 37*x^2 + 1*x^3)/R(x)
where R(x) = (1-x)^5 * Product_{n>=0} (1 - x^(5^n))^4.
Further, the quintisections are related by:
_ Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2.