cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195761 G.f.: exp( Sum_{n>=1} A055457(n) * 5^A055457(n) * x^n/n ) where 5^A055457(n) exactly divides 5*n.

Original entry on oeis.org

1, 5, 15, 35, 70, 135, 255, 465, 810, 1345, 2180, 3480, 5465, 8410, 12645, 18720, 27405, 39690, 56785, 80120, 111840, 154805, 212590, 289485, 390495, 522640, 694955, 918490, 1206310, 1573495, 2040260, 2631955, 3379065, 4317210, 5487145, 6941780, 8746180, 10977565, 13725310
Offset: 0

Views

Author

Paul D. Hanna, Sep 23 2011

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 135*x^5 + 255*x^6 +...
log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 50*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 50*x^10/10 +...
The coefficients in the QUINTISECTIONS of g.f. A(x) begin:
Q0: [1, 135, 2180, 18720, 111840, 522640, 2040260, 6941780, ...];
Q1: [5, 255, 3480, 27405, 154805, 694955, 2631955, 8746180, ...];
Q2: [15, 465, 5465, 39690, 212590, 918490, 3379065, 10977565, ...];
Q3: [35, 810, 8410, 56785, 289485, 1206310, 4317210, 13725310, ...];
Q4: [70, 1345, 12645, 80120, 390495, 1573495, 5487145, 17090945, ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(N=ceil(log(n+6)/log(5)));polcoeff(1/prod(k=0,N,(1-x^(5^k) +x*O(x^n))^(4*k+5)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, valuation(5*m, 5)*5^valuation(5*m, 5)*x^m/m)+x*O(x^n)), n)}

Formula

G.f.: A(x) = Product_{n>=0} 1/(1 - x^(5^n))^(4*n+5).
G.f. satisfies: A(x) = (1-x^5)/(1-x)^5 * A(x^5)^2/A(x^25).
G.f. satisfies: A(x) = A(x^5)*G(x) where G(x) = G(x^5)*(1-x^5)/(1-x)^5 is the g.f. of A195760.
Let the QUINTISECTIONS of A(x) be defined by:
A(x) = Q0(x^5) + x*Q1(x^5) + x^2*Q3(x^5) + x^3*Q3(x^5) + x^4*Q4(x^5),
then
_ Q0(x) = (1 + 121*x + 381*x^2 + 121*x^3 + x^4)/R(x)
_ Q1(x) = 5*(1 + 37*x + 73*x^2 + 14*x^3)/R(x)
_ Q2(x) = 5*(3 + 51*x + 64*x^2 + 7*x^3)/R(x)
_ Q3(x) = 5*(7 + 64*x + 51*x^2 + 3*x^3)/R(x)
_ Q4(x) = 5*(14 + 73*x + 37*x^2 + 1*x^3)/R(x)
where R(x) = (1-x)^5*Product_{n>=0} (1 - x^(5^n))^(4*n+9).
Further, the quintisections are related by:
_ Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2.